نوع مقاله : مقاله پژوهشی فارسی

نویسندگان

گروه علوم و صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران

10.22067/ifstrj.2023.82845.1263

چکیده

تیمار حرارتی (خشک و مرطوب) ازجمله روش‌های فیزیکی جهت اصلاح ویژگی‌های عملکردی آردهای بدون گلوتن و بهبـود کیفیت محـصولات حاصـل از آن‌هـا می‌باشد. طبیعتا تأثیر حرارت متأثر از اندازه ذرات حرارت‌دهی شده است. در این پژوهش، آرد برنج واکسی در اندازه ذرات مختلف (180، 150 و 125) میکرون تحت تأثیر تیمار حرارتی خشک به‌مدت 2 ساعت و تیمار حرارتی مرطوب (رطوبت، %25) به‌مدت 5 ساعت در دمای 110 درجه سانتی‌گراد مورد مطالعه قرار گرفت. در این بررسی میزان آسیب‌دیدگی نشاسته آرد برنج و خصوصیات کیفی نان بدون گلوتن از قبیل درصد افت وزنی، حجم مخصوص نان، اندیس‌های شکل، آون اسپرینگ، رنگ مغز و پوسته و بافت نان مورد بررسی قرار گرفتند. نتایج نشان داد تیمارهای حرارتی خشک و مرطوب بطور معنی‌دار منجر به کاهش میزان آسیب‌دیدگی نشاسته شدند. تأثیر اندازه ذرات بر افت وزنی، اندیس تقارن و یکنواختی، آون اسپرینگ و رنگ مغز و پوسته معنی‌دار نبود، اما تیمار حرارتی مرطوب نمونه حاصل از اندازه ذرات کمتر از 180 میکرون افت وزنی را در طی پخت افزایش داد. تیمار حرارتی مرطوب آرد برنج منجر به افزایش حجم مخصوص، نسبت مغز به پوسته، اندیس حجم، تیرگی و زردی پوسته و مغز نان حاصل شد، در حالی‌که میزان سفتی و قابلیت جویدن نمونه‌ها را کاهش داد. بطور کلی نمونه حاصل از ذرات 125 میکرون و تیمار حرارتی مرطوب منجر به بهبود کیفیت نان بدون گلوتن شد.

کلیدواژه‌ها

موضوعات

©2023 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source.

  1. AACC (2000). American Association of cereal chemists. Approved methods of the AACC, 10th American Association of cereal chemists, St Paul, USA.
  2. Bae, I.Y., & Lee, H.G. (2018). Effect of dry heat treatment on physical property and in vitro starch digestibility of high amylose rice starch. International Journal of Biological Macromolecules108, 568-575. https://doi.org/10.1016/j.ijbiomac.2017.11.180
  3. Bao, J., & Bergman, C.J. (2018). Rice flour and starch functionality. In Starch in Food, 373-419. https://doi.org/10.1016/B978-0-08-100868-3.00010-X
  4. Bourekoua, H., Benatallah, L., Zidoune, M.N., & Rosell, C.M. (2016). Developing gluten free bakery improvers by hydrothermal treatment of rice and corn flours. Lwt, 73, 342-350. https://doi.org/10.1016/j.lwt.2016.06.032
  5. De la Hera, E., Martinez, M., & Gómez, M. (2013). Influence of flour particle size on quality of gluten-free rice bread. LWT-Food Science and Technology, 54(1), 199-206. https://doi.org/10.1016/j.lwt.2013.04.019
  6. De La Hera, E., Rosell, C.M., & Gomez, M. (2014). Effect of water content and flour particle size on gluten-free bread quality and digestibility. Food Chemistry, 151, 526-531. https://doi.org/10.1016/j.foodchem.2013.11.115
  7. Fathi, B., Aalami, M., Kashaninejad, M., & Mahoonak, A.S. (2016). Utilization of heat-moisture treated proso millet flour in production of gluten-free poung cake. Journal of Food Quality, 39(6), 611–9. https://doi.org/10.1111/jfq.12249
  8. Gomez, M., & Martinez, M.M. (2016). Changing flour functionality through physical treatments for the production of gluten-free baking goods. Journal of Cereal Science67, 68-74. https://doi.org/10.1016/j.jcs.2015.07.009
  9. Haghighat‐Kharazi, S., Reza Kasaai, M., Milani, J.M., & Khajeh, K. (2020). Antistaling properties of encapsulated maltogenic amylase in gluten‐free bread. Food Science & Nutrition, 8(11), 5888-5897. https://doi.org/10.1002/fsn3.1865
  10. Hong, J., Li, L., Li, C., Liu, C., Zheng, X., & Bian, K. (2019). Effect of heat–moisture treatment on physicochemical, thermal, morphological, and structural properties of mechanically activated large A‐and small B‐wheat starch granules. Journal of Food Science84(10), 2795-2804. https://doi.org/10.1111/1750-3841.14745
  11. Hoseney, R.C. (1994). Principles of cereal science and technology(No. Ed. 2). American Association of Cereal Chemists (AACC).
  12. Khwanchai, P., & Fong-In, S. (2022). Effect of heat treatment of broken rice flour as partial substitution of wheat flour on the qualities of bread. Burapha Science Journal, 27(1), 171-187.
  13. Kim, M.J., Oh, S.G., & Chung, H.J. (2017). Impact of heat-moisture treatment applied to brown rice flour on the quality and digestibility characteristics of Korean rice cake. Food Science and Biotechnology26(6), 1579-1586. https://doi.org/10.1007/s10068-017-0151-x
  14. Kim, M.H. (2013). Review on rice flour manufacturing and utilization. Journal of Biosystems Engineering38(2), 103-112. http://dx.doi.org/10.5307/JBE.2013.38.2.103
  15. Kurek, M.A., & Sokolova, N. (2019). Optimization of bread quality with quinoa flour of different particle size and degree of wheat flour replacement. Food Science and Technology40, 307-314.https://doi.org/10.1590/fst.38318
  16. Lawal, O.S., Lapasin, R., Bellich, B., Olayiwola, T.O., Cesaro, A., Yoshimura, M., & Nishinari, K. (2011). Rheology and functional properties of starches isolated from five improved rice varieties from West Afica. Food Hydrocolloids, 25, 1785–1792. https://doi.org/10.1016/j.foodhyd.2011.04.010
  17. Lazaridou, A., Duta, D., Papageorgiou, M., Belc, N., & Biliaderis, CG. (2007). Effects of hydrocolloids on dough rheology and bread quality parameters in gluten-free formulations. Journal of food Engineering, 79, 1033-1047. https://doi.org/10.1016/j.jfoodeng.2006.03.032
  18. Liu, C., Song, M., Liu, L., Hong, J., Guan, E., Bian, K., & Zheng, X. (2020). Effect of heat-moisture treatment on the structure and physicochemical properties of ball mill damaged starches from different botanical sources. International Journal of Biological Macromolecules156, 403-410‏. https://doi.org/10.1016/j.ijbiomac.2020.04.043
  19. McDermott, E.E. (1980). The rapid non‐enzymic determination of damaged starch in - flour. Journal of the Science of Food and Agriculture, 31(4), 405-413. https://doi.org/10.1002/jsfa.2740310411
  20. Nakagawa, M., Tabara, A., Ushijima, Y., Matsunaga, K., & Seguchi, M. (2016). Hydrophobicity of stored (15, 35° C), or dry-heated (120° C) rice flour and deteriorated breadmaking properties baked with these treated rice flour/fresh gluten flour. Bioscience, Biotechnology, and Biochemistry80(5), 983-990. https://doi.org/10.1080/09168451.2015.1136875
  21. Naqash, F., Gani, A., Gani, A., & Masoodi, F.A. (2017). Gluten-free baking: Combating the challenges-A review. Trends in Food Science & Technology66, 98-107. https://doi.org/10.1016/j.tifs.2017.06.004
  22. Pang, J., Guan, E., Yang, Y., Li, M., & Bian, K. (2021). Effects of wheat flour particle size on flour physicochemical properties and steamed bread quality. Food Science & Nutrition9(9), 4691-4700. https://doi.org/10.1016/j.tifs.2017.06.004
  23. Qin, W., Lin, Z., Wang, A., Chen, Z., He, Y., Wang, L., & Tong, L.T. (2021). Influence of particle size on the properties of rice flour and quality of gluten-free rice bread. LWT, 151, 112236. https://doi.org/10.1016/j.lwt.2021.112236
  24. Qin, Y., Liu, C., Jiang, S., Cao, J., Xiong, L., & Sun, Q. (2016). Functional properties of glutinous rice flour by dry-heat treatment. Plos One, 11(8). https://doi.org/10.1371/journal.pone.0160371
  25. Ramos, L., Alonso-Hernando, A., Martinez-Castro, M., Moran-Perez, J.A., Cabrero-Lobato, P., Pascual-Mate, A., & Mujico, J.R. (2021). Sourdough biotechnology applied to gluten-free baked goods: Rescuing the tradition. Foods, 10(7), 1498‏. https://doi.org/10.3390/foods10071498
  26. Ramzy, R.A., & Putra, A.B.N. (2021). Evaluation of white bread physical characteristics substituted by red kidney bean flour with different particle sizes and concentrations. Journal of Microbiology, Biotechnology and Food Sciences2021, 610-615. https://doi.org/10.15414/jmbfs.2019/20.9.3.610-615
  27. Renzetti, S., Heetesonne, I., Ngadze, R.T., & Linnemann, A.R. (2022). Dry heating of cowpea flour below biopolymer melting temperatures improves the physical properties of bread made from climate-resilient crops. Foods11(11), 1554. https://doi.org/10.3390/foods11111554
  28. Ruiiz, E., Srikaeo, K., & de la Revilla, L.S. (2018). Effects of heat moisture treatment on physicochemical properties and starch digestibility of rice flours differing in amylose content. Food and Applied Bioscience Journal6(3), 140-153. https://doi.org/10.14456/fabj.2018.13
  29. Seow, E.K., Gan, C.Y., Tan, T.C., Lee, L.K., & Easa, A.M. (2019). Influence of honey types and heating treatment on the rheological properties of glutinous rice flour gels. Journal of Food Science and Technology56(4), 2105-2114. https://doi.org/10.1007/s13197-019-03691-z
  30. Shittu, T.A., Dixon, A., Awonorin, S.O., Sanni, L.O., & Maziya-Dixon, B. (2008). Bread from composite cassava–wheat flour. II: Effect of cassava genotype and nitrogen fertilizer on bread quality. Food Research International41(6), 569-578. https://doi.org/10.1016/j.foodres.2008.03.008
  31. Tabara, A., Nakagawa, M., Ushijima, Y., Matsunaga, K., & Seguchi, M. (2015). Effects of heat treatment on oil-binding ability of rice flour. Bioscience, Biotechnology, and Biochemistry79(10), 1629-1634. https://doi.org/10.1080/09168451.2015.1039479
  32. Villanueva, M., Harasym, J., Munoz, J.M., & Ronda, F. (2019). Rice flour physically modified by microwave radiation improves viscoelastic behavior of doughs and its bread-making performance. Food Hydrocolloids, 90, 472-481. https://doi.org/10.1016/j.foodhyd.2018.12.048

 

CAPTCHA Image