نوع مقاله : مقاله پژوهشی فارسی

نویسندگان

1 گروه علوم و مهندسی صنایع غذایی، دانشکده صنایع غذایی، دانشگاه علوم کشاورزی منابع طبیعی گرگان، گرگان، ایران

2 گروه علوم شیلات، دانشکده شیلات، دانشگاه آزاداسلامی واحد بندرعباس، بندرعباس، ایران

10.22067/ifstrj.2023.82949.1265

چکیده

آستاگزانتین رنگدانه­ی کاروتنوئیدی پرکاربرد در صنایع غذایی است که از منابع مختلف طبیعی و سنتزی به روش­های گوناگون استخراج می­شود. امروزه باتوجه به اثرات نامطلوب حلال­های آلی استفاده از حلال­های سبز رایج شده است. زیرا این حلال­ها نسبت به حلال­های آلی دوستدار محیط‌زیست بوده و ویژگی­هایی مانند فراریت و سمی بودن را ندارند. بنابراین این پژوهش با هدف استخراج آستاگزانتین تحت شرایط خیساندن به مدت 24ساعت با حلال آلی (مخلوط اتانول: اتیل استات (1:2))، حلال سبز (میکروامولسیون مایع یونی در آب) و روغن گیاهی (روغن آفتابگردان) از پوسته میگوی موزی (Fenneropenaeus merguiensis) و سخت‌پوست گاماروس (Pontogammarus maeoticus) انجام شد. میکرو امولسیون مایع یونی در آب به‌عنوان حلالی جدید برای استخراج آستاگزانتین در نظر گرفته شد. تعیین چگالی، رسانایی و قطر از جمله ویژگی­های مورد آزمون میکروامولسیون بودند. بهترین شرایط برای استخراج، بیشترین میزان آستاگزانتین است که با به کارگیری حلال­ها و نسبت‌های حلال به نمونه 5 برابر، 5/12 برابر و 20 برابر تعیین شد. میزان آستاگزانتین، کاروتنوئید کل، درصد بازیافت و فعالیت مهار رادیکال DPPH آزمون­هایی بودند که برای بررسی آستاگزانتین استخراجی انجام شدند. طبق نتایج چگالی میکروامولسیون در محدوده 97151/0 گرم بر سانتی‌متر مکعب، قطر آن 8/15 نانومتر و رسانایی 312 میکروزیمنس در دمای 1/27 درجه سانتی‌گراد تعیین شد. نتایج حاصل از استخراج آستاگزانتین با حلال­های مختلف در مقایسه با حلال اتانول بعنوان شاهد از لحاظ آماری معنی‌دار بود. با توجه به نتایج بدست آمده از استخراج آستاگزانتین از دو منبع میگوی موزی و سخت‌پوست گاماروس، میگوی موزی به‌عنوان منبع با بالاترین میزان آستاگزانتین استخراجی انتخاب شد. استفاده از حلال سبز(میکرو امولسیون مایع یونی در آب) در نسبت 5/12 برابر حلال به نمونه نیز به‌عنوان بهترین روش انتخاب شد. مقدار آستاگزانتین استخراج شده در بهترین شرایط 09/1 ± 44/77 میلی‌گرم بر میلی‌لیتر بود. نتایج حاصل از مهار رادیکال DPPH توسط آستاگزانتین استخراج شده به کمک حلال­های ذکر شده در مقایسه با آنتی‌اکسیدان سنتتیک BHT نشان داد که با افزایش غلظت آستاگزانتین فعالیت آنتی‌اکسیدانی افزایش می­یابد. اما این افزایش همواره کمتر از فعالیت آنتی‌اکسیدانی BHTبود. به‌طور کلی نتایج حاصل ازاین پژوهش نشان داد که استفاده از میکروامولسیون مبتنی برمایع یونی جایگزین مناسبی برای روش‌های مرسوم دراستخراج و بازیابی آستاگزانتین ازمنابع زیستی طبیعی است.

کلیدواژه‌ها

موضوعات

©2023 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source.

  1. Ambati, R.R., Siew Moi, P., Ravi, S., & Aswathanarayana, R.G. (2014). Astaxanthin: Sources, extraction, stability, biological activities and its commercial applications-A review. Marine drugs, 12(1), 128-152. https://doi.org/10.3390/md12010128
  2. Amiri-Rigi, A., & Abbasi, S. (2019). Extraction of lycopene using a lecithin-based olive oil microemulsion. Food chemistry, 272, 568-573. https://doi.org/10.1016/j.foodchem.2018.08.080
  3. Amiri-Rigi, A., Abbasi, S., & Scanlon, M.G. (2016). Enhanced lycopene extraction from tomato industrial waste using microemulsion technique: Optimization of enzymatic and ultrasound pre-treatments. Innovative Food Science & Emerging Technologies, 35, 160-167. https://doi.org/10.1016/j.ifset.2016.05.004
  4. Amorim-Carrilho, K., Cepeda, A., Fente, C., & Regal, P. (2014). Review of methods for analysis of carotenoids. TrAC Trends in Analytical Chemistry, 56, 49-73. https://doi.org/10.1016/j.trac.2013.12.011
  5. Brandão, L.B., Coêlho, D.F., Souza, R.R., & Silva, C.F. (2019). Technological prospection of astaxanthin recovery of shrimp waste litopenaeus vannamei by the vegetable oil extracton process. Revista INGI-Indicação Geográfica e Inovação, 3(465-475).
  6. Delgado-Vargas, F., & Paredes-Lopez, O. (2002). Natural colorants for food and nutraceutical uses: CRC press.
  7. Gao, J., You, J., Kang, J., Nie, F., Ji, H., & Liu, S. (2020). Recovery of astaxanthin from shrimp (Penaeus vannamei) waste by ultrasonic-assisted extraction using ionic liquid-in-water microemulsions. Food Chemistry, 325, 126850. https://doi.org/10.1016/j.foodchem.2020.126850
  8. Haque, F., Dutta, A., Thimmanagari, M., & Chiang, Y.W. (2016). Intensified green production of astaxanthin from Haematococcus pluvialis. Food and BioproductsProcessing, 99, 1-11. https://doi.org/10.1016/j.fbp.2016.03.002
  9. Hooshmand, H., Shabanpour, B., Moosavi‐Nasab, M., Alishahi, A., & Golmakani, M.T. (2021). The optimization of extraction of carotenoids pigments from blue crab (Portunus pelagicus) and shrimp (Penaeus semisulcatus) wastes using ultrasound and microwave. Journal of Marine Science and Technology, 20(2), 72-93. https://doi.org/10.22113/jmst.2018.105737.2084
  10. Hooshmand, H., Shabanpour, B., Moosavi‐Nasab, M., & Golmakani, M.T. (2017). Optimization of carotenoids extraction from blue crab (Portunus pelagicus) and shrimp (Penaeus semisulcatus) wastes using organic solvents and vegetable oils. Journal of Food Processing and Preservation, 41(5), e13171.https://doi.org/10.1111/jfpp.13171
  11. Khoo, K.S., Chew, K.W., Yew, G.Y., Manickam, S., Ooi, C.W., & Show, P.L. (2020). Integrated ultrasound-assisted liquid biphasicflotation for efficient extraction of astaxanthin from Haematococcus pluvialis. Ultrasonics Sonochemistry, 67, 105052. https://doi.org/10.1016/j.ultsonch.2020.105052
  12. Kishimoto, Y., Tani, M., Uto-Kondo, H., Iizuka, M., Saita, E., Sone, H., & Kondo, K. (2010). Astaxanthin suppresses scavenger receptor expression and matrix metalloproteinase activity in macrophages. European Journal of Nutrition, 49(2), 119-126. https://doi.org/10.1007/s00394-009-0056-4
  13. Martins, P.L.G., Braga, A.R., & de Rosso, V.V. (2017). Can ionic liquid solvents be applied in the foodindustry? Trends in Food Science & Technology, 66, 117-124. https://doi.org/10.1016/j.tifs.2017.06.002
  14. Nikmaram, P., Mousavi, S.M., Emam-Djomeh, Z., Kiani, H., & Razavi, S.H. (2015). Evaluation and prediction of metabolite production, antioxidant activities, and survival of Lactobacillus casei 431 in a pomegranate juice supplemented yogurt drink using support vector regression. Food Science and Biotechnology, 24(6), 2105-2112. https://doi.org/10.1007/s10068-015-0279-5
  15. Norshazila, S., Irwandi, J., Othman, R., & Zuhanis, H.Y. (2012). Scheme of obtaining [Beta]-carotene standard from pumpkin (Cucurbita moschata) flesh. International Food Research Journal, 19(2), 531.
  16. Parjikolaei, B.R., Errico, M., El-Houri, R.B., Christensen, K.V., & Fretté, X.C. (2016). Green approaches to extract Astaxanthin from Shrimp waste: process design and economic evaluation. In Computer Aided Chemical Engineering, 38, 649-654. https://doi.org/10.1016/B978-0-444-63428-3.50113-2
  17. Pérez-López, P., González-García, S., Jeffryes, C., Agathos, S.N., McHugh, E., Walsh, D., Moreira, M.T. (2014). Life cycle assessment of the production of the red antioxidant carotenoid astaxanthin by microalgae: from lab to pilot scale. Journal of Cleaner Production, 64, 332-344. https://doi.org/10.1016/j.jclepro.2013.07.011
  18. Radi, M., & Abbasi, S. (2013). Microemulsions and their application in food industry, Nano Technology Monthly, No. 3.
  19. Roohinejad, S., Oey, I., Everett, D., & Niven, B. (2014). Evaluating the effectiveness of β-carotene extraction from pulsed electric field-treated carrot pomace using oil-in-water microemulsion. Food and Bioprocess Technology, 7, 3336-334. https://doi.org/10.1007/s11947-014-1334-6
  20. Ruen-ngam, D., Shotipruk, A., & Pavasant, P. (2010). Comparison of extraction methods for recovery of astaxanthin from Haematococcus pluvialis. Separation Science and Technology, 46(1), 64-70. https://doi.org/10.1080/01496395.2010.493546
  21. Saini, R.K., & Keum, Y.-S. (2018). Carotenoid extraction methods: A review of recent developments. Food Chemistry, 240, 90-103. https://doi.org/10.1016/j.foodchem.2017.07.099
  22. Silva, A.K.N.D., Rodrigues, B.D., Silva, L.H.M.D., & Rodrigues, A.M.D.C. (2018). Drying and extraction of astaxanthin from pink shrimp waste (Farfantepenaeus subtilis): the applicability of spouted beds. Food Science and Technology, 38, 454-461.
  23. Sowmya, R., Ravikumar, T., Vivek, R., Rathinaraj, K., & Sachindra, N. (2014). Optimization of enzymatic hydrolysis of shrimp waste for recovery of antioxidant activity rich protein isolate. Journal of Food Science and Technology, 51, 3199-3207. https://doi.org/10.1007/s13197-012-0815-8
  24. Tan, Y., Ye, Z., Wang, M., Manzoor, M.F., Aadil, R.M., Tan, X., & Liu, Z. (2021). Comparison of different methods for extracting the astaxanthin from Haematococcus pluvialis: Chemical composition and biological activity. Molecules, 26(12), 3569. https://doi.org/10.3390/molecules26123569
  25. Zhao, X., Zhang, X., Fu, L., Zhu, H., & Zhang, B. (2016). Effect of extraction and drying methods on antioxidant activity of astaxanthin from Haematococcus pluvialis. Food and Bioproducts Processing, 99, 197-203. https://doi.org/10.1016/j.fbp.2016.05.007

 

 

CAPTCHA Image