نوع مقاله : مقاله مروری
نویسنده
گروه بیوتکنولوژی، دانشکده علوم و فناوری های همگرا، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
چکیده
بستهبندی هوشمند مواد غذایی بهعنوان یک فناوری جدید میتواند کیفیت و ایمنی مواد غذایی را در طول زمان ماندگاری حفظ کند. این فناوری از حسگرهایی استفاده میکندکه در بستهبندی بکار رفته و تغییرات فیزیولوژیکی مواد غذایی (بهدلیل تخریب میکروبی و شیمیایی) را تشخیص میدهد. این حسگرها، معمولاً اطلاعاتی را ارائه میدهند که به راحتی توسط توزیعکننده مواد غذایی و مصرفکننده قابل شناسایی است. با این حال، بیشتر حسگرهایی که در حال حاضر مورد استفاده قرار میگیرند، مواد مصنوعی تجزیهناپذیر هستند. ریز جلبکهایی که در آبهای دریایی و شیرین زندگی میکنند، راهحلی همه کاره برای ساخت حسگرهای زیستی جدید برای تشخیص آلایندهها مانند علفکشها یا فلزات سنگین هستند. این میکروارگانیسمهای فتوسنتزی به تغییرات محیطی خود بسیار حساس هستند و امکان تشخیص آلایندهها را فراهم میکنند. بنابراین، این مقاله با هدف بازنگری آخرین اطلاعات در مورد حسگرهای زیستی، براساس ترکیبات بهدست آمده از عصارههای ریز جلبکی است که میتوانند در ارتباط با پلیمرهای زیستی، بهعنوان بستهبندی هوشمند مواد غذایی عمل کنند. با این حال، هنوز محدودیتهایی وجود دارد که باید قبل از اینکه این فناوری به مرحله بالغ تجاری برسد، بر آن غلبه کرد.
کلیدواژهها
موضوعات
عنوان مقاله [English]
A Review of the Use of Microscopic Algae as Biological Sensors for Identifying Environmental Pollutants and Smart Packaging of Food Materials
نویسنده [English]
- Bahareh Nowruzi
Department of Biotechnology, Faculty of Converging Sciences and Technologies, Islamic Azad University, Science and Research Branch, Tehran, Iran
چکیده [English]
Introduction
Intelligent food packaging as a new technology can maintain the quality and safety of food during its shelf life. This technology uses indicators and sensors that are used in packaging and detects physiological changes in food (due to microbial and chemical degradation). These indicators usually provide information that can be easily identified by the food distributor and the consumer. However, most of the markers currently used are non-renewable and non-degradable synthetic materials. Microalgae that live in both marine and freshwater are a versatile solution for building new biosensors to detect pollutants such as herbicides or heavy metals. These photosynthetic microorganisms are very sensitive to their environmental changes and allow the detection of pollutants. In the past few years, several studies have been conducted in relation to the development, evaluation and application of biosensors using natural compounds in smart food packaging, and some of them are reported and summarized in Table 2.
Materials and Methods
In these studies, examples are mainly focused on biosensors related to biopolymers, but some other synthetic polymers that are easily degraded have also been used as examples. In Table 2, it is also specified what the function and application of the sensor is and how it reacts to the loss of freshness of food. Most sensors are sensitive to the change in pH caused by the release of volatile nitrogen compounds, and this change is characterized by a colorimetric response. Sensors are usually placed in the space above the food container, avoiding direct contact with the food, but close enough to detect changes in the environment and respond to changes in food quality. When these biosensors are integrated with biopolymers, they are usually incorporated into the polymer structure, and the color change of the layers (film) indicates changes in food quality in the packed product. The collected information also clearly shows that extracts rich in chemical compounds of pigments that change color with pH and especially anthocyanins have been used in these biosensors. In addition, most studies of biosensors have been conducted on fish, meat, and seafood, which is probably because their quality degradation is an important economic loss and also because the pH of the surrounding environment is changed during the degradation process. , and this change is easily detected through pH-sensitive biosensors. Smart food packaging technology has made it possible to monitor food quality by incorporating markers, sensors and radio frequency identification (RFID) into packaging. The technology also allows producers and consumers to trace the history of a product through important points in the food supply chain.Interestingly, some compounds applied and tested in the sensor not only provide a pH-sensitive dye, but also have other bioactive properties, for example, antimicrobial properties, and its presence in the polymer matrix can also increase the storage activity of packaging materials.
Results and Discussion
This paper shows that microalgae can be used as biosensors to detect pollutants such as herbicides, heavy metals and volatile organic compounds. These biosensors are very sensitive and reproducible for physical or chemical analysis. One of the main advantages of these microalgal biosensors is that repeated measurements can be performed without extensive sample preparation. They can also be selective, for example chlorophyll fluorescence emitted from photosynthetic activity allows the detection of herbicides, while inhibition of alkaline phosphatase and esterase allows the determination of heavy metals and organophosphate insecticides. Recently, great progress has been made in the identification of genes and related pathways in microalgae, and powerful techniques for genetic engineering have been developed. Collectively, the progress achieved in these areas will rapidly increase our ability to genetically optimize the production of more sensitive microalgae-based biosensors.
کلیدواژهها [English]
- Biosensors
- Food preservation
- Freshness of food
- Microalgae
- Smart packaging
©2023 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source. |
- Afreen, R., Tyagi, S., Singh, G.P., & Singh, M. (2021). Challenges and perspectives of polyhydroxyalkanoate production from microalgae/cyanobacteria and bacteria as microbial factories: an assessment of hybrid biological system. Frontiers in Bioengineering and Biotechnology, 9, 624885. https://doi.org/10.3389/fbioe.2021.624885
- Allouzi, M.M.A., Allouzi, S., Al-Salaheen, B., Khoo, K.S., Rajendran, S., Sankaran, R., & Show, P.L. (2022). Current advances and future trend of nanotechnology as microalgae-based biosensor. Biochemical Engineering Journal, 187, 108653. https://doi.org/10.1016/j.ecoenv.2012.01.002
- Altamirano, M., Garcıa-Villada, L., Agrelo, M., Sánchez-Martın, L., Martın-Otero, L., Flores-Moya, A., & Costas, E. (2004). A novel approach to improve specificity of algal biosensors using wild-type and resistant mutants: an application to detect TNT. Biosensors and bioelectronics, 19(10), 1319-1323. https://doi.org/10.1016/j.toxicon.2013.10.003
- Antonacci, A., & Scognamiglio, V. (2020). Biotechnological advances in the design of algae-based biosensors. Trends in Biotechnology, 38(3), 334-347. https://doi.org/3329/bjb.v42i2.18033
- Aydınoğlu, D. (2020). Active food packaging technology as an application in the food industry. Academic Studies in Engineering Sciences, 215. https://doi.org/21123/bsj.15.1.16-21
- Azman, N.H., Khairul, W.M., & Sarbon, N.M. (2022). A comprehensive review on biocompatible film sensor containing natural extract: Active/intelligent food packaging. Food Control, 141, 109189. https://doi.org/10.1016/j.foodcont.2022.109189
- Bao, Z., Weatherspoon, M. R., Shian, S., Cai, Y., Graham, P.D., Allan, S.M., & Kang, Z. (2007). Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas. Nature, 446(7132), 172-175. https://doi.org/10.1016/j.toxicon.2011.02.015
- Brayner, R., Couté, A., Livage, J., Perrette, C., & Sicard, C. (2011a). Micro-algal biosensors. Analytical and Bioanalytical Chemistry, 401, 581-597. https://doi.org/10.1016/j.aquatox.2015.11.002
- Brayner, R., Couté, A., Livage, J., Perrette, C., & Sicard, C. (2011b). Micro-algal biosensors. Analytical and Bioanalytical Chemistry, 401(2), 581-597. https://doi.org/10.1007/s00216-011-5107-z
- Carrilho, E.N.V., Nóbrega, J.A., & Gilbert, T.R. (2003). The use of silica-immobilized brown alga (Pilayella littoralis) for metal preconcentration and determination by inductively coupled plasma optical emission spectrometry. Talanta, 60(6), 1131-1140. https://doi.org/10.1016/j.toxicon.2007.09.001
- Chen, J., Ren, Y., Seow, J., Liu, T., Bang, W., & Yuk, H. (2012). Intervention technologies for ensuring microbiological safety of meat: current and future trends. Comprehensive Reviews in Food Science and Food Safety, 11(2), 119-132. https://doi.org/10.1016/j.algal.2014.12.009
- Chouteau, C., Dzyadevych, S., Chovelon, J.-M., & Durrieu, C. (2004). Development of novel conductometric biosensors based on immobilised whole cell Chlorella vulgaris Biosensors and Bioelectronics, 19(9), 1089-1096. https://doi.org/10.3390/md9112164
- Coste, M., Boutry, S., Tison-Rosebery, J., & Delmas, F. (2009). Improvements of the Biological Diatom Index (BDI): Description and efficiency of the new version (BDI-2006). Ecological Indicators, 9(4), 621-650. https://doi.org/10.1126/science.1099128
- De, P., & Mazumder, N. (2022a). Diatoms as sensors and their applications. In Diatom Microscopy (pp. 251-281). https://doi.org/10.1016/j.scitotenv.2019.03.104
- De, P., & Mazumder, N. (2022b). Diatoms as sensors and their applications. Diatom Microscopy, 251-281. https://doi.org/10.1016/j.hal.2015.10.015
- De Stefano, L., Rendina, I., De Stefano, M., Bismuto, A., & Maddalena, P. (2005a). Marine diatoms as optical chemical sensors. Applied Physics Letters, 87(23). https://doi.org/10.1111/pbi.12638
- De Stefano, L., Rendina, I., De Stefano, M., Bismuto, A., & Maddalena, P. (2005b). Marine diatoms as optical chemical sensors. Applied Physics Letters, 87(23), 233902. https://doi.org/10.3389/fmicb.2016.01693
- Durrieu, C., Badreddine, I., & Daix, C. (2003). A dialysis system with phytoplankton for monitoring chemical pollution in freshwater ecosystems by alkaline phosphatase assay. Journal of Applied Phycology, 15, 289-295. https://doi.org/10.1021/np500106w
- Durrieu, C., & Tran-Minh, C. (2002). Optical algal biosensor using alkaline phosphatase for determination of heavy metals. Ecotoxicology and Environmental Safety, 51(3), 206-209. https://doi.org/10.1016/j.hal.2010.12.002
- Ejeian, F., Etedali, P., Mansouri-Tehrani, H.-A., Soozanipour, A., Low, Z.-X., Asadnia, M., & Razmjou, A. (2018). Biosensors for wastewater monitoring: A review. Biosensors and Bioelectronics, 118, 66-79. https://doi.org/10.1016/j.bios.2018.07.019
- Giardi, M.T., & Pace, E. (2005). Photosynthetic proteins for technological applications. TRENDS in Biotechnology, 23(5), 257-263. https://doi.org/10.1016/j.febslet.2012.07.026
- Giere, O. (2008). Meiobenthology: the microscopic motile fauna of aquatic sediments: Springer Science & Business Media. https://doi.org/10.3390/toxins11110624
- Guedri, H., & Durrieu, C. (2008). A self-assembled monolayers based conductometric algal whole cell biosensor for water monitoring. Microchimica Acta, 163, 179-184. https://doi.org/10.1186/s40529-017-0211-9
- Halonen, N., Pálvölgyi, P.S., Bassani, A., Fiorentini, C., Nair, R., Spigno, G., & Kordas, K. (2020). Bio-based smart materials for food packaging and sensors – A Review. Frontiers in Materials, 7. https://doi.org/10.3389/fmats.2020.00082
- Hemavathi, A., & Siddaramaiah, H. (2018). Food packaging: polimers as packaging materials in food supply chains. Encyclopedia of polymer applications. CRC Press Boca Raton, 1374-1397. https://doi.org/10.1080/03650340.2010.499902
- Ladero, V., Calles-Enríquez, M., Fernández, M., & A Alvarez, M. (2010). Toxicological effects of dietary biogenic amines. Current Nutrition & Food Science, 6(2), 145-156. https://doi.org/10.3390/md11103689
- Lin, K.-C., Kunduru, V., Bothara, M., Rege, K., Prasad, S., & Ramakrishna, B. (2010). Biogenic nanoporous silica-based sensor for enhanced electrochemical detection of cardiovascular biomarkers proteins. Biosensors and Bioelectronics, 25(10), 2336-2342. https://doi.org/10.1007/s11104-008-9734-x
- Liu, Q., & Wang, P. (2009). Cell-based biosensors: principles and applications: Artech House. https://doi.org/10.1016/j.jplph.2010.09.013
- Mallick, N. (2002). Biotechnological potential of immobilized algae for wastewater N, P and metal removal: a review. Biometals, 15, 377-390. https://doi.org/10.1007/s11356-013-1535-y
- Mazumder, N., & Gordon, R. (2022). Diatom Microscopy: John Wiley & Sons. https://doi.org/10.3109/10408410902823705
- Monique, E. (2015). Volatile amines as criteria for chemical quality assessment. In. https://doi.org/10.1007/s11356-016-6223-2
- Moreno-Garrido, I. (2008). Microalgae immobilization: current techniques and uses. Bioresource Technology, 99(10), 3949-3964. https://doi.org/10.1016/S0041-0101(98)00114-7
- Nassif, N., & Livage, J. (2011). From diatoms to silica-based biohybrids. Chemical Society Reviews, 40(2), 849-859. https://doi.org/10.1006/abio.1995.1106
- Okuma, H., Okazaki, W., Usami, R., & Horikoshi, K. (2000). Development of the enzyme reactor system with an amperometric detection and application to estimation of the incipient stage of spoilage of chicken. Analytica Chimica Acta, 411(1-2), 37-43. https://doi.org/10.1016/j.foodchem.2012.01.107
- Park, Y.W., Kim, S.M., Lee, J.Y., & Jang, W. (2015). Application of biosensors in smart packaging. Molecular & Cellular Toxicology, 11, 277-285. https://doi.org/10.1007/BF01874863
- Pavelková, A. (2013). Time temperature indicators as devices intelligent packaging. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 61(1), 245-251. https://doi.org/10.1016/j.ejsobi.2006.11.001
- Peña-Vázquez, E., Pérez-Conde, C., Costas, E., & Moreno-Bondi, M. (2010). Development of a microalgal PAM test method for Cu (II) in waters: comparison of using spectrofluorometry. Ecotoxicology, 19, 1059-1065. https://doi.org/10.4489/MYCO.2006.34.3.138
- Pospíšil, P. (2009). Production of reactive oxygen species by photosystem II. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1787(10), 1151-1160. https://doi.org/10.1016/j.bbabio.2009.05.005
- Poyatos-Racionero, E., Ros-Lis, J.V., Vivancos, J.-L., & Martínez-Máñez, R. (2018). Recent advances on intelligent packaging as tools to reduce food waste. Journal of Cleaner Production, 172, 3398-3409. https://doi.org/10.1016/j.jclepro.2017.11.075
- Punakivi, K., Smolander, M., Niku-Paavola, M.-L., Mattinen, J., & Buchert, J. (2006). Enzymatic determination of biogenic amines with transglutaminase. Talanta, 68(3), 1040-1045. https://doi.org/4489/MYCO.2008.36.4.242
- Purohit, B., Vernekar, P. R., Shetti, N. P., & Chandra, P. (2020). Biosensor nanoengineering: Design, operation, and implementation for biomolecular analysis. Sensors International, 1, 100040. https://doi.org/10.1016/j.algal.2016.04.004
- Rahman, M.A., Soumya, K., Tripathi, A., Sundaram, S., Singh, S., & Gupta, A. (2011). Evaluation and sensitivity of cyanobacteria, Nostoc muscorum and Synechococcus PCC 7942 for heavy metals stress–a step toward biosensor. Toxicological & Environmental Chemistry, 93(10), 1982-1990. https://doi.org/10.1016/j.scitotenv.2014.04.037
- Rathnayake, I., Munagamage, T., Pathirathne, A., & Megharaj, M. (2021). Whole cell microalgal-cyanobacterial array biosensor for monitoring Cd, Cr and Zn in aquatic systems. Water Science and Technology, 84(7), 1579-1593. https://doi.org/10.1139/W08-034.
- Reynolds, C.S. (2006). The ecology of phytoplankton: Cambridge University Press. https://doi.org/30493/DAS.2020.246624
- Roberta, B., Alain, C., Jacques, L., Catherine, P., & Clemence, S. (2011). Micro-algal biosensors. Analytical and Bioanalytical Chemistry, 401(2), 581-598. https://doi.org/30493/DAS.2020.246624.
- Rodriguez Jr, M., Sanders, C. A., & Greenbaum, E. (2002). Biosensors for rapid monitoring of primary-source drinking water using naturally occurring photosynthesis. Biosensors and Bioelectronics, 17(10), 843-849. https://doi.org/10.1111/jpy.120
- Sandhage, K. H., Allan, S. M., Dickerson, M. B., Gaddis, C. S., Shian, S., Weatherspoon, M. R., & Snyder, R. L. (2005). Merging biological self‐assembly with synthetic chemical tailoring: The Potential for 3‐D Genetically Engineered Micro/Nano‐Devices (3‐D GEMS). International Journal of Applied Ceramic Technology, 2(4), 317-326. https://doi.org/10.1007/s10295-010-0833-3
- Saraswati, P.K., & Srinivasan, M. (2015). Micropaleontology: Principles and applications: Springer. https://doi.org/3923/ajps.2003.944.951
- Shao, C., Howe, C., Porter, A.J.R., & Glover, L. (2002). Novel cyanobacterial biosensor for detection of herbicides. Applied and Environmental Microbiology, 68(10), 5026-5033. https://doi.org/10.1007/s10265-006-0057-9
- Shitanda, I., Takada, K., Sakai, Y., & Tatsuma, T. (2005). Compact amperometric algal biosensors for the evaluation of water toxicity. Analytica Chimica Acta, 530(2), 191-197. https://doi.org/10.1016/j.aquatox.2013.04.007
- Sobhan, A., Muthukumarappan, K., & Wei, L. (2021). Biosensors and biopolymer-based nanocomposites for smart food packaging: Challenges and opportunities. Food Packaging and Shelf Life, 30, 100745. https://doi.org/10.1016/j.fpsl.2021.100745
- Tajes-Martinez, P., Beceiro-Gonzalez, E., Muniategui-Lorenzo, S., & Prada-Rodriguez, D. (2006). Micro-columns packed with Chlorella vulgaris immobilised on silica gel for mercury speciation. Talanta, 68(5), 1489-1496. https://doi.org/10.1016/j.jgeb.2013.04.001.
- Védrine, C., Leclerc, J.-C., Durrieu, C., & Tran-Minh, C. (2003). Optical whole-cell biosensor using Chlorella vulgaris designed for monitoring herbicides. Biosensors and Bioelectronics, 18(4), 457-463. https://doi.org/10.1093/oxfordjournals.aob.a084742.
- Verma, N., Kaur, H., & Kumar, S. (2011). Whole cell based electrochemical biosensor for monitoring lead ions in milk. Biotechnology, 10(3), 259-266. https://doi.org/10.3390/app11020871
- Wadhera, T., Kakkar, D., Wadhwa, G., & Raj, B. (2019). Recent advances and progress in development of the field effect transistor biosensor: A review. Journal of Electronic Materials, 48, 7635-7646. https://doi.org/10.1007/s11099-017-0716-1
- Yam, K.L., Takhistov, P.T., & Miltz, J. (2005). Intelligent packaging: concepts and applications. Journal of Food Science, 70(1), R1-R10. https://doi.org/1007/s11274-019-2653-6
- Zamaleeva, A.I., Sharipova, I.R., Shamagsumova, R.V., Ivanov, A.N., Evtugyn, G.A., Ishmuchametova, D.G., & Fakhrullin, R.F. (2011). A whole-cell amperometric herbicide biosensor based on magnetically functionalised microalgae and screen-printed electrodes. Analytical Methods, 3(3), 509-513. https://doi.org/10.1016/j.fob.2011.10.004
ارسال نظر در مورد این مقاله