Food Chemistry
Masoumeh Heydari Gharehcheshmeh; Akram Arianfar; Elham Mahdian; Sara Naji-Tabasi
Abstract
[1]Introduction: Sesame oil and sweet almond oil are rich in unsaturated fatty acids and antioxidant components, providing nutritional and functional properties including improvement of the gastrointestinal system, decrease in blood cholesterol level, eventually leading to a decrease in the risk of cardiovascular ...
Read More
[1]Introduction: Sesame oil and sweet almond oil are rich in unsaturated fatty acids and antioxidant components, providing nutritional and functional properties including improvement of the gastrointestinal system, decrease in blood cholesterol level, eventually leading to a decrease in the risk of cardiovascular disease. The present study examined the possibility of the production of emulsion based on sesame and sweet almond oils and the effect of preparation on its stability. Material and methods: Sesame oil and sweet almond oil with tween 80 and span 80 as emulsifiers were used in emulsion production. In order to prepare the nanoemulsions, the water and oil phases were prepared separately by the ultrasonic homogenizer. Ultrasonic waves were applied for homogenization and the effect of Ultrasonic time (5, and 10 min), oil content (2, and 4%), and emulsifier concentration (0.25, 0.5%) on particle size, particle distribution index (PDI), turbidity loss rate, emulsion stability and zeta potential of nanoemulsions were studied. Results and discussion: Ultrasonic time had a reverse effect on particle size, particle distribution index (PDI) and turbidity loss rate and a direct effect on emulsion stability. The particle size and turbidity loss rate of prepared emulsions had a direct relation with oil concentration and a negative effect on emulsion stability. Emulsifier concentration had a positive effect on emulsion stability, a negative effect on emulsion stability, and had no significant effect on turbidity loss rate. According to the results of the effect of type and concentration of oil on particle size distribution, turbidity reduction rate and stability of nanoemulsions in all cases, samples containing sesame oil with a concentration of 2% compared to sweet almond oil, had better results, the presence of this oil led to the formation of nanoemulsions with smaller particles and greater stability. The produced nanoemulsions had a particle size between 200-320 nm, a stability of 91-98/7% and a turbidity reduction rate of 0.0010-0.0027. Also, the highest stability and zeta potential were reported 98.7 % and -33mV respectively, which belonged to sample k4. Therefore, this sample was selected as the optimal sample.The results showed that the particle size, mean particle diameter, particle dispersion and turbidity reduction rate showed a significant difference between the samples, so that the lowest and highest were related to K4 sample (2% sesame oil, homogenization time 10 minutes and Emulsifier concentration ratio 0.5%) and sample B5 (almond oil 4%, homogenization time 5 minutes and emulsifier concentration ratio 0.5%) (p <0.05). The results also showed that the highest level of stability and zeta potential was related to K4 sample. Thus, the best nanoemulsion, K4 sample was introduced