Azam Ayoubi; Mahda Porabolghasem
Abstract
Introduction: Increased intake of calorie and decreasing physical activity might increase the risks for cancer, obesity, cardiovascular diseases, diabetes mellitus and hypertension. Using natural sweeteners instead of sugar in food formulations can be a good method to reduce the calorie intake. World ...
Read More
Introduction: Increased intake of calorie and decreasing physical activity might increase the risks for cancer, obesity, cardiovascular diseases, diabetes mellitus and hypertension. Using natural sweeteners instead of sugar in food formulations can be a good method to reduce the calorie intake. World Health Organization recommends limiting added sugar intake to <10% of total energy. Many sugar substitutes were used in food products such as glucose syrup, molasses, fructose syrup, invert syrup and malt extract. Utilization of fruits in food preparation while requiring sweet taste is a wise strategy to reduce the added sugar intake. Dates are ideal fruits to substitute added sugar in foods, and they play an important role in daily nutrition of many people in the arid regions. Date fruits are rich in dietary fiber, phenolic compounds, minerals, vitamins, antioxidant and antimutagenic compounds. Date syrup that produces from date is one of the suitable replacements that can be used for substituting sugar. Date syrup is a high energy food rich in carbohydrate, a good source of minerals; but it is also contains a very complex mixture amino and organic acids, polyphenols and carotenoids. Date syrup contains fructose, glucose and small amount of sucrose. Low quality date cultivation occupies about 60% of the total plantation. These dates are poor in size and taste, unsuitable for consumption. The presence of high sugar content in these low quality varieties makes them suitable for producing date syrup. The purpose of this research was study the effects of substituting sugar with date syrup on physicochemical and sensory properties of cupcake.
Materials and methods: Date syrup purchase from Dambaz Company and wheat flour purchase from Tavakkol factory of Kerman. Other materials purchased from local market of Kerman. In this research four different level of date syrup (25, 50, 75 and 100%) were used in cake formulations as a sugar substitution and the effects of dates syrup on the physicochemical (including weight loss, pH, porosity, density, moisture, hardness of texture and color of crust and crump) and sensory (texture, crust color, taste and total acceptance) properties of cupcake were studied. The weight loss calculated by measuring difference of weight before and after baking. pH was measured by a digital pH meter. cake moisture content was determined by drying samples at 130±2°C in a hot air oven. The volumes of the cake samples were measured by the seed displacement method and then density was calculated by dividing the volume by the weight. For evaluation of porosity used Image j method. Hardness of the cake samples were measured with Instron testing machine. Color measurements were done using a Hunterlab Colorimeter. Analysis of variance (ANOVA) was conducted for data using MSTAT-C software. Differences among the mean values were also determined using Duncan’s Multiple Range test. A significant level was defined as a probability of 0.05.
Results & Discussion: Data analysis showed that the date syrup, significantly affected the physiochemical and sensory properties of the cake. It was discovered that by increasing the percentage of date syrup in cake formulation, weight loss decreased and moisture increased. Sugars make hydrogen bonds with water molecules due to their hydroxyl groups, because of the molecular structure of the sugars like sucrose, fructose and glucose, it seems that increasing functional groups in date syrup sugars compared with sucrose, resulted in the formation of more hydrogen bonds, which caused the reduction in the mobility of free water and therefore make an increase in moisture of cake. According to the results, pH and porosity of the cake decreased as the date syrup level increased. The results showed that increasing date syrup level caused an increase in density. By decreasing the volume of cake density increased. The volume probability decreased because of affecting reduced sugars and changing viscosity and density of the cake batter. Based on the results, hardness increased significantly with increasing replacement of sugar with date syrup. The possible reason for this result was due to decreasing volume and porosity of cake with increasing date syrup content. The color of the cake is due to the Maillard and caramelization reactions during baking. A key element in Maillard reaction is reducing sugar which is abundant in date syrup and able to enhance the brown color. The results showed that the crust and crump lightness (L) decreased significantly with increasing the levels of date syrup. The crust and crump yellowness (b) were significantly less than control. With reducing sucrose level, the redness of the crust and crump increased significantly. According to sensory evaluation results, scores of crust color, texture and total acceptance of the cake remained unchanged when up To 50% date syrup was used. However, further addition of date syrup significantly reduced these scores. The results showed that the cake formulation with 100% date syrup date obtained the lowest score by panelists in terms of taste. Least value of weight loss (19/2%), porosity (19/5%) and most value of density (0/5 g/cm3), darkness of crust (32/47) and crump of cake (35/64) were related to substitution level of 100%. Present study demonstrated that the date syrup could replace up to 50% of the sugar without affecting the quality of cupcakes.
Abbas Abedfar; Alireza Sadeghi; Mahdi Kashani-Nejad; Morteza Khomeiri; Mehran Alami
Abstract
Introduction: Sourdough is a very complex biological system and an important modern fermentation method of cereal flours and water. Sourdough fermentation is based on lactic acid and alcoholic fermentation depending on the composition of micro flora and fermentation conditions. Commercial sourdough processes ...
Read More
Introduction: Sourdough is a very complex biological system and an important modern fermentation method of cereal flours and water. Sourdough fermentation is based on lactic acid and alcoholic fermentation depending on the composition of micro flora and fermentation conditions. Commercial sourdough processes do not rely on fortuitous flora but on the use of specific starter cultures. There has also been much progress in the development of tools that allow for the selection of key sourdough microorganisms for particular activities such as those concerned with enzymatic, antimicrobial, nutritional and additive replacement aspects. Most of the beneficial properties attributed to sourdough are determined by the acidification activity of dominant Lactobacillus starters. Sourdough fermentation can improve texture and palatability of whole grain fiber-rich, stabilize or increase levels of various bioactive compounds, retard starch retro-gradation and improve mineral bioavailability. The acidification of the sourdough and the partial acidification of the bread dough will impact on structure-forming components like gluten, starch and arabinoxylans. The swelling of gluten in acid is a well-known effect and mild acid hydrolysis of starch in sourdough systems has also been hypothesized for delay bread staling. The objectives of this research were to apply the dominant Lactobacillus starter isolated from traditional sourdough for cup bread production with whole wheat flour and delay it's staling. Materials and methods: In this study, following isolation of dominant Lactobacillus starter from traditional sourdough produced with whole wheat flour, the starter was identified by specific PCR. The single colonies obtained from streak plate of the sourdough culture, were subjected to species specific PCR. Afterwards, the mentioned starter was used for sourdough preparation. For this purpose, the effect of flour components (extraction rate, moisture, protein, ash and falling number), fermentation times (8, 16, 24 h) and sugar contents (0.5, 1, 1.5%) on starter activity were evaluated. pH and total titratable acidity (TTA) of sourdough treatments were measured. After processing of cup breads with sourdough treatments, the staling of these breads were also examined 2, 48 and 96 h after baking, based on crumb firmness (texture analysis) and amount of porosity (Image j method). Finally for statistical analysis a completely randomized design with factorial arrangement and 3 replications was used. To study the relationship between bread hardness and porosity with fermentation conditions, multiple linear regression was used and regression models were exhibited. Results and Discussion: By sequencing of the PCR products (obtained from sourdough culture), dominant Lactobacillus starter was identified as Lactobacillus plantarum. The TTA profile for the sourdoughs was also quite similar (starters interestingly continue to produce acid) and by increasing of TTA, the pH values were decreased. The acid production depends on factors such as fermentation temperature, time and dough yield. In general, a higher temperature, a higher water content of sourdough and the utilization of whole meal flour enhances the production of acids in wheat sourdoughs. The effect of sourdough on softness improvement was partly due to a higher porosity. Among the bread samples, 96 h after baking, lowest crumb firmness was observed in sample produced with sourdough with 24 h fermentation and 0.5%. sugar content. The maximum amount of crumb firmness was observed in sample produced with sourdough after 8 h fermentation and 1.5% sugar content. Furthermore, the maximum amount of porosity was obtained after 24 h sourdough fermentation and 1.5% sugar content, while the lowest amount was obtained after 8 h sourdough fermentation and 0.5% sugar content. After evaluation the results of texture analysis and porosity tests, significant correlation coefficients were established between porosity and softness, and it is reported that volume improvement is the main reason for a better shelf life in sourdough breads. The relationship between factors affecting on sourdough fermentation including fermentation time, sugar content and flour components, were also exhibited as regression models for examination texture characteristics of sourdough breads based on those viscoelastic behavior. By increasing the fermentation time in all of the sourdoughs, crumb hardness was decreased. Acids strongly influence the mixing behavior of doughs. Doughs with lower pH values require a slightly shorter mixing time and have less stability than normal doughs. Fundamental rheological evaluation of acid effect on gluten systems model indicated that both softness and elasticity of gluten were increased. Further to the direct impact of low pH on dough characteristics, secondary effects of acidification and fermentation time including changes in the activity of cereal or bacterial enzymes associated. Wheat flour proteases have optimal activity around pH=4. In addition, proteolytic enzymes with acidic pH optima in vital wheat gluten have been detected. Process requirements for optimum quality were strain-specific and different for textural improvement which should be taken in to account in designing future sourdough baking processes. According to results of this research, the influence of sourdough on bread softness during storage was depended on fermentation conditions and significant effect of sourdough process conditions on bread staling was clarified in comparison to control sample.
Azam Hajmohammadi; Javad Keramat; Mohammad Hojjatoleslami; Hooman Molavi
Abstract
The increasing tendency for health oriented products caused considerable research has studied on
increase and maintaining quality of different products. Sponge cake is one of the cereal products which
itsmain problems arereterogradation and lack of soluble dietary fibers which has many health benefits. ...
Read More
The increasing tendency for health oriented products caused considerable research has studied on
increase and maintaining quality of different products. Sponge cake is one of the cereal products which
itsmain problems arereterogradation and lack of soluble dietary fibers which has many health benefits. In this
research, therefore, the effects of adding oat β-D-glucan on the physical properties of sponge cake were
investigated. Samples were produced by different concentrations of β-D-glucan (1, 2, 3 and 4%)with control
sample. Physical properties of samples including volume index, porosity, hardness, color and sensory properties
were examined. The results showed that the addition of β-D-glucan up to 2 (%) softened the cakes without
unpleasant changes in sensory properties, also increased volume index, porosity and color of the cakesamples
Rahmatollah Eshtavad; Davood Kalantari
Abstract
In this work, experimental studies of internal friction coefficient and porosity of four high productive rice varieties in Iran (Nemat, Neda, Pajouhesh and Pardis) have been presented. Moisture content varied in four different ranges between 8 and 20%. The obtained results indicated that the internal ...
Read More
In this work, experimental studies of internal friction coefficient and porosity of four high productive rice varieties in Iran (Nemat, Neda, Pajouhesh and Pardis) have been presented. Moisture content varied in four different ranges between 8 and 20%. The obtained results indicated that the internal friction coefficient decreased with increasing the moisture content from 8 to 11%, then decreased with increasing the moisture content. The internal friction angles for Nemat, Neda, Pajouhesh and Pardis at the equilibrium moisture content, i.e., 11%, were 39.3, 37.5, 33.95 and 34.38° respectively. Based on results obtained in this study, the apparent physical properties of the rice varieties, e.g., length of the grain, cross sectional diameter of the grain, relative roughness of the external surface of the grain, etc. have significant influence on the normal stress-shear stress relationship. Meanwhile, porosity of the samples depends on the type of variety and moisture content. Porosities of the samples at equilibrium moisture content were 70.8% for Nemat, 63.9% for Neda, 62.7% for Pajouhesh and 66.5% for Pardis