Food Biotechnology
َAlireza Hemmati; Ali Ganjloo; Kambiz Varmira; Mandana Bimakr
Abstract
Introduction It is believed that edible oils and fats with high levels of unsaturated fatty acids are susceptible to oxidation. Soybean oil as one of the four important edible oils has high content of polyunsaturated fatty acids and so prone to oxidation. Generally, lipid oxidation leads to deterioration ...
Read More
Introduction It is believed that edible oils and fats with high levels of unsaturated fatty acids are susceptible to oxidation. Soybean oil as one of the four important edible oils has high content of polyunsaturated fatty acids and so prone to oxidation. Generally, lipid oxidation leads to deterioration of nutritional quality and organoleptic properties of edible oils and fats as well as accelerate the development or progression of cancer, mutagenesis, carcinogenesis, aging and cardiovascular diseases through the formation of free radicals. Therefore, edible oils and fats fortification with antioxidant compounds in order to protect them against oxidation is essential. In recent years, numerous studies were carried out on exploration of natural and safe antioxidant compounds due to the consumers concerns about potential health risk of synthetic antioxidants, such as butylatedhydroxyanisole (BHA), butylatedhydroxytolene (BHT), tert-butylhydroquinone (TBHQ) and propylgallate (PG). In this regard, TBHQ as the most powerful synthetic antioxidant is prohibited as food additive in Japan, Canada and Europe. Ferulago angulata Boiss which called chavir or chavil belongs to the family of Apiacea consisting of 35–40 species that 8 species grow in Iran. It was reported that Ferulago species are used in folk medicine for their tonic, digestive, sedative, aphrodisiac properties from ancient times. Therefore, in the current study, the oxidation development of soybean oil enriched with F. angulata essential oil (EO) during accelerated storage was investigated. Materials and Methods EO from freeze dried aerial parts of F. angulata was extracted through hydrodistillation using Clevenger type apparatus. Gas chromatography-mass spectrometry (GC-MS) was used to identify main components of the EO. Total phenolic and flavonoid content of the EO were assessed using Folin–Ciocalteu and aluminium chloride colorimetry methods, respectively. Antioxidant activity of EO was measured through 2, 2-Diphenyl-1-picrylhydrazyl (DPPH) and reducing power (RP) tests. Then, the EO of F. angulata at three concentrations, i.e. 200 ppm (SO-200), 400 ppm (SO-400), and SO-Mixture (100 ppm TBHQ + 100 ppm EO) were added to soybean oil. The synthetic antioxidant of TBHQ at the concentration of 200 ppm was added as control. The effect of EO from freeze dried aerial parts of F. angulata on oxidative stability of soybean oil stored under accelerated conditions at 65 ºC for 24 days was evaluated through acidity, peroxide (PV), p-anisidine (p-An) and TOTOX values. Results and Discussion Extraction yield, total phenolic and flavonoid contents of EO of F. angulata were 2.5% v/w, 188 mg GAE/g and 70.90 mg QE/g respectively. Furthermore, DPPH free radical scavenging activity and RP were 55.45-13.21% and 3.61-2.72 in the concentration range of 1.6-4.6 mg/ml of EO, respectively. Based on GC-MS analysis, the EO contains 41 natural compounds, representing 96.97% of the total EO. F. angulata EO could effectively reduce the acidity, PV and p-An values. For control sample, the maximum values of acidity, PV peroxide, p-An and TOTOX were 1.52 mg KOH/g, 10.60 meq O2/kg, 12.48 and 33.68 respectively after 24 days under accelerated conditions. While these values were 0.085 mg KOH/g, 4.5 meq O2/kg, 9.16 and 18.16 respectively for the soybean oil containing the lowest concentration of EO of F. angulata. Conclusion The results confirmed the instability of soybean oil during storage as well as the ability of EO from F. angulata for soybean oil protection against oxidation. As a result, EO from aerial parts of F. angulata could be suggested as a natural and effective antioxidant to be used instead of TBHQ as a synthetic antioxidant for soybean oil stabilization.
Hamed Hosseini; Mohammad Ghorbani; Alireza Sadeghi Mahoonak; Yahya Maghsoudlou
Abstract
An accelerated shelf-life test using elevated temperatures 62, 72 and 82 ˚C was conducted to predict the oxidation progression of walnuts over a long-term storage. Oxidation parameters including values of conjugated dienes (CD) and trienes (CT) values and thiobarbituric acid (TBA) value were employed ...
Read More
An accelerated shelf-life test using elevated temperatures 62, 72 and 82 ˚C was conducted to predict the oxidation progression of walnuts over a long-term storage. Oxidation parameters including values of conjugated dienes (CD) and trienes (CT) values and thiobarbituric acid (TBA) value were employed to evaluate the oxidation processes. Changes followed an apparent first-order kinetic. Walnuts and walnut kernels were also kept in normal condition (20-30˚С; RH, 35-45%) for 12 months in order to validate the approach. A maximum of energy (62.24-75.67 kJ mol-1 K-1) needed for formation of primary oxidation products and a minimum of energy (35.65 kJ mol-1 K-1) to generate secondary oxidation products were calculated. Formation of oxidation products in walnut kernels was found to be a temperature-dependent reaction, with Q10 =1.44- 2.1. The results showed that CD and CT values could provide a proper estimation for oxidative stability of the nuts stored in ordinary condition, with an average error of approximately 12.9%.