Food Biotechnology
Nasim Najafi; Hajar Abbasi
Abstract
Due to its health benefits, fresh sprouted cereals are considered popular food source. They are very sensitive and highly susceptible to microbial spoilage during transportation, processing, and storage. This phenomenon makes them potentially high-risk fresh products. This study aimed to assess the effect ...
Read More
Due to its health benefits, fresh sprouted cereals are considered popular food source. They are very sensitive and highly susceptible to microbial spoilage during transportation, processing, and storage. This phenomenon makes them potentially high-risk fresh products. This study aimed to assess the effect of emulsion coating consisting of Dracocephalum kotschyi essential oil (0, 50, 150, 250, 300 ppm)-chitosan solution (0, 0.3, 0.38, 0.63, 0.75%) during the immersion time (10, 25, 55, 85, 100 s) on the microbial properties of fresh sprouted wheat stored at 4°C. The Response Surface Methodology (RSM) was adopted in modeling the independent variables’ effects. The results shown that increase in the essential oil and chitosan solution concentration reduced the microbial spoilage. High concentration of Dracocephalum kotschyi oil decreased the fungus population after 12 days. Coating of sprouted wheat at optimized level of independent variables (0.62% chitosan, 57 ppm Dracocephalum kotschyi oil and 29.49 s immersion time) reduced the microbial and fungal populations. This treatment can reduce weight loss, and maintain tissue firmness, total phenolic, and ascorbic acid content of the sprouted wheat during cold storage, with no effect on its sensory properties. Our findings indicate that nanoemulsion coating based on chitosan and Dracocephalum kotschyi oil at appropriate levels could be beneficial in maintaining sprouted wheat quality and increasing its shelf-life.
Food Technology
Parisa Parsa; Mostafa Mazaheri Tehrani; Mohebbat Mohebbi
Abstract
Introduction Bran-enriched bread is a source of dietary fibers and other nutritional compounds; However, wheat bran also contains phytic acid, asparagine, a high ratio of insoluble to soluble fiber, insoluble arabinoxylans, and glutathione that cause nutritional and technological problems in the ...
Read More
Introduction Bran-enriched bread is a source of dietary fibers and other nutritional compounds; However, wheat bran also contains phytic acid, asparagine, a high ratio of insoluble to soluble fiber, insoluble arabinoxylans, and glutathione that cause nutritional and technological problems in the product. Therefore, to produce bran-enriched bread, it is necessary to use pre-processed wheat bran. Despite the modifications made in wheat bran to improve its nutritional and functional properties, wheat bran-rich cereal products have a dark color, rough texture, and small loaf volume. To improve the quality of bran-enriched bread, common additives in the bakery industry such as enzymes, alcoholic sugars, emulsifiers can be used. Xylanase is one of the important classes of hemicellulase enzymes that delays the aggregation of amylose chains, and consequently, bread staling. Moreover, the xylanase enzyme increases the loaf volume by converting water-insoluble arabinoxylans into soluble ones. SSL emulsifier can interact with gliadin protein and prevent its participation in crosslinking bonds, which softens the bread crumbs. Polyols can reduce water activity and improve the softness of bread. Sorbitol is commonly used in starch-based foods to improve their quality by modifying starch gelatinization and retrogradation. So far, no article has been presented on the simultaneous effect of enzyme, alcoholic sugar, and emulsifier improvers on bread enriched with processed wheat bran. In addition, the amount and composition of improvers used in combination with each other can cause various effects on different properties of bread. This study aims to improve the technological, physicochemical, and finally stalling of optimal bread enriched with 15% of pre-processed wheat bran while benefiting from the nutritional properties of wheat bran. Materials and Methods In this study, the effect of sodium stearoyl-2-lactylate emulsifier (0-0.8%), xylanase enzyme (0-0.05%), and sorbitol sugar alcohol (0-6%) as improving agents on The physicochemical and technological parameters of bread enriched with 15% pre-processed wheat bran were investigated based on the response surface method in the form of a rotatable central composite design. After that, design-expert software determined the optimum percentage of improvers to achieve the minimum amount of firmness and cohesiveness of bread and the maximum amount of specific volume, moisture of bread crumbs, lightness of bread crust, and solidity of bread pore structure. Finally, optimal and control samples were compared using the Differential Scanning Calorimetry and Scanning Electron Microscopic experiments. Results and Discussion The experiments showed the bread's firmness under the influence of SSL emulsifier and sorbitol alcoholic sugar and chewiness, by adding SSL emulsifier and xylanase enzyme decreased significantly. All three improvers caused a significant increase in the specific volume of bread. The pore characteristics of bread crumbs, such as solidity and circularity, were significantly improved by adding an SSL emulsifier, and roundness was considerably enhanced by adding sorbitol alcohol. The brightness of bread crust was also increased significantly by the SSL emulsifier and xylanase enzyme. In addition, the Xylanase enzyme improved the moisture content of bread by substantially increasing the moisture content of bread crumbs, and alcoholic sugar and SSL emulsifier with a significant reduction in crust moisture. Moreover, the chewiness of bread on the first day after baking, specific volume, moisture of bread crust on the third day after baking, and the solidity of bread crumbs were significantly improved due to the interaction of SSL emulsifier and sorbitol alcohol. Also, the interaction of the xylanase enzyme and SSL emulsifier improved the specific volume, moisture of the bread crumbs on the first day after baking, the lightness of the bread crust, the pore area fraction, and the circularity of the bread crumbs. Finally, the optimal formula was obtained, including 0.563% of SSL emulsifier, 0.040% of xylanase enzyme, and 2.356% of alcoholic sugar sorbitol. The results showed a significant decrease in enthalpy and an increase in the initial gelatinization temperature in the optimal sample compared to the control ones. Also, a weaker gluten network, more swelling, and amounts of starch granules in the microstructure of sample bread were observed. Conclusion In conclusion, SSL emulsifier by interaction with amylose and amylopectin in starch granules, sorbitol alcohol via interacting with water molecules surrounding starch chains or by bonding between starch chains in amorous regions, and xylanase enzyme through reducing rate of crystallization can reduce the gelatinization of starch granules, enthalpy, and finally the retrogradation process of amylopectin and stalling rate of bread with their synergic effects. In this research, we formulate the wheat bran-enriched bread that not only benefits from the nutritional features of wheat bran but also preserves the quality characteristics of bread.
Food Technology
Narmela Asefi; Nasibeh Alirezaloo; Pouya Barman Veisi; Haleh Soraiyay Zafar
Abstract
Introduction Sweet Pepper (Capsicum annum) has a very important place among the vegetables produced in the world. Therefore, it is necessary to apply practical solutions to increase their sustainability to develop and improve production. The growing consumer rejection of chemical additives and the ...
Read More
Introduction Sweet Pepper (Capsicum annum) has a very important place among the vegetables produced in the world. Therefore, it is necessary to apply practical solutions to increase their sustainability to develop and improve production. The growing consumer rejection of chemical additives and the demand for more natural products have increased attention to some methods, including the drying method. One of the physical changes that occur during the drying of food is its reduction in volume. Vacuum drying is a method in which water and other solvents that have been absorbed into the volume or surface of the material are removed. Combining vacuum with heating can be an effective way to dry; because in this case, a high level of dryness can be achieved without the need for a large increase in temperature. A thermal process that is applied to vegetables and fruits as a pre-process step for freezing, drying and canning to inactivating enzymes, modifying texture, preserving flavor and nutrients, and extracting Interstitial air. Materials and Methods This study aimed to investigate the impact of various factors ethyloleate (concentrations 0,2,4%), sodium chloride(concentrations 0,2,4%) and blanching on the drying kinetics, physical properties, chemical composition and nutrients of green bell pepper, dried under vacuum at 60°C and pressure of 10 kpa using the response surface methodology. At the end of the drying time, 10 g of the treated samples were weighted to investigate the drying kinetics and the rest of the samples were kept for analysis. To achieve the drying kinetics, the samples were taken out of the oven (Behdad Company, model 3494, made in Iran) at 30 minute intervals and weighed by a digital scale, and dried down to moisture content of 12% ., and then for relevant analyzes on dried samples, the samples were stored in plastic packages until the day of experiments. Investigation of independent and interaction effects of immersion in different concentrations of sodium chloride and ethyloleate solution on the kinetics and drying time separately in blanching and non-blanching samples on the parameters of color, chlorophyll content, phenolic substances and vitamin C remaining in dried Sweet peppers were evaluated using minitab16 software and response level method (RSM). Results and Discussion The results showed that the drying process occur in the range of falling rate and also effect blanching in boiling water for 3 minutes and immersed in an alkaline solution of ethyloleate and sodium chloride with concentrations of 2 and 4% for 1 minute, significantly increase the drying rate. In blanching and treated samples with 4% ethyloleate and sodium chloride, the drying time was about 3.5 hours, while the control sample was dried under the same conditions for 7.5 hours. Pretreatment of samples, showed the chlorophyll content, phenolic compounds and vitamin C were higher than the control sample. Due to the effectiveness of ethyloleate in the protection of ascorbic acid, phenolic compounds and residual chlorophyll, the highest amount of ascorbic acid with a value of 39.77 was related to the samples treated in ethyloleate solution with a concentration of 4% and 4% NaCl and the minimum value of 17.98 was related to the control treatment. The highest amount of residual chlorophyll was 23.6 in the pretreated samples with a concentration of 4% ethyloleate and 4% NaCl and the lowest amount was related to the control sample with a concentration of 12.9%. The color of the dried samples showed that the lowest amount of color changes was related to the non-blanching sample with 4% ethyloleate and 4% NaCl with a value of 4.94. While the blanching and ethyloleate solution had no positive effect on the color of pepper and dried samples were dark. Comparison of blanching with non-blanching shows that blanching samples cause darkening of the primary color of the samples.The best sample in terms of quality and speed of drying, was belonged to the samples which blanched, treated with 4% solution of ethyloleate and sodium chloride. Conclusion In order to achieve the best quality in vacuum drying of pepper samples, pretreatments of blanching and using a concentration of 4% solution of ethyloleate and sodium chloride showed the most desirable quality. The best quality of dried samples were obtained when subjected to constant temperature and pressure during drying conditions. The benefits obtained using the pretreatment of ethyloleate and sodium chloride as an appropriate method of drying include increasing the absorption of water, keeping the chlorophyll, phenolic compounds and vitamin C content with time-saving in drying.
Food Technology
Fariba Hadidi; Ali Ganjloo; Mohammad Hadi Fakoor
Abstract
Introduction
The demand for non-dairy and reduced-calorie products has increased substantially for several reasons. Almond (Prunus dulcis) milk is highly appreciated by lactose-intolerant, hypertensive people and celiac patients whom are not able to consume animal's milk. Thus, the development ...
Read More
Introduction
The demand for non-dairy and reduced-calorie products has increased substantially for several reasons. Almond (Prunus dulcis) milk is highly appreciated by lactose-intolerant, hypertensive people and celiac patients whom are not able to consume animal's milk. Thus, the development of various non-dairy products is essential. Desserts are the most common and popular product containing high amount of fat and sucrose. The consumption of sucrose is restricted for diabetic people due to its high glycemic index. Stevia as a low-calorie sweetener is one of the sucrose substitutes in food products. Sucrose substitutes must mimic the techno-functional properties of sucrose. Generally, commercially available sucrose substitutes do not possess all of the required characteristics. Therefore, using them in blend form with sucrose is suggested. Moreover, sucrose replacement especially in desserts generates a negative effect due to low firmness or higher syneresis. In this regard, hydrocolloids can be used to overcome those drawbacks. Therefore, the current study was carried out to investigate and optimize the non-dairy dessert formulation based on almond milk containing Tragacanth gum and stevia. For this purpose, the effect of Tragacanth gum and stevia as a sucrose replacer on the physicochemical properties such as hardness, viscosity, color coordinates including lightness, redness-greenness (a*), yellowness-blueness (b*), total soluble solids and syneresis was evaluated and optimized using Response Surface Methodology (RSM).
Materials and Methods
All of the materials used for the manufacturing of non-dairy dessert including raw almond, stevia and Tragacanth gum were purchased from a local market of Zanjan, Iran. For the production of non-dairy dessert, the almond milk warmed up to 40 ºC and then stevia as a sucrose substitutes and tragacanth gum powder as a stabilizer were added in the ranges of 25-75% and 0.4-1% w/w, respectively. Later, the temperature of the mixture increased to 72 ºC and kept for 10 min and then, the temperature decreased to 42 ºC to inoculate the starter culture (a mixture of Streptococcus thermophilus and Lactobacillus bulgaricus, 2% w/w). The fermentation process was completed at 37 °C for 24 h. Finally, the temperature of non-dairy dessert based on almond milk was decreased to 4ºC and kept at the same temperature until further analysis. The pH of the desserts was measured using a pH meter model AZ 86502 (AZ, Taiwan). Total soluble of the desserts was determined using a refractometer (ATAGO, Japan). Firmness was determined using a STM-5 texture analyzer (SANTAM Co., Iran) equipped with a 20 Kg load cell and 10 mm probe. Viscosity was measured using a programmable Viscometer (R/S-CPS+, Brookfield, USA) equipped with a cone-plate geometry at shear rate of 100 s−1. Instrumental color measurement was carried out by a handheld colorimeter (TES135-A, Taiwan) considering L*, a* and b* as color coordinates. Syneresis was measured by a centrifugation test. Fifteen semi-trained panelists (7 male and 8 female) were selected to evaluate sensory properties of the control (only contains sucrose) and optimized formulation samples for texture, color, appearance, taste, flavor, total acceptance using a 5-point Hedonic scale (1= dislike extremely and 5=like extremely). The RSM-central composite design was used to build up the experimental design and identify the conditions that yield highest firmness, viscosity, L*, and total soluble solids as well as lowest a*, b* and syneresis.
Results and Discussion
The results obtained revealed that the hardness, viscosity, a* and total soluble solids increased significantly (p<0.05) while the lightness, b* and syneresis decreased significantly (p<0.05) with increasing the Tragacanth gum in the formulation of non-dairy dessert based on almond milk. In addition, increasing the replacement of sucrose with stevia significantly (p<0.05) reduced the hardness, viscosity, total soluble solids, and increasing lightness and syneresis. However, increasing the percentage of sucrose replacement with stevia had no significant effect (p>0.05) on the changes of a* and b*. Optimization of non-dairy dessert formulation based on almond milk was carried out using numerical technique. The optimal formula was 1% Tragacanth gum and 45% replacement of sucrose with stevia. Under these conditions, hardness 0.08 N, viscosity 1.20 Pa.s, lightness 82.77, redness-greenness 0.95, yellowness-blueness 5.60, total soluble solids 8.29 ºBrix and syneresis 11.88% were obtained. The results of sensory evaluation showed that addition of Tragacanth gum and replacing stevia at the optimal levels improved the total acceptance score compared to the control sample.
It can be concluded that in addition to the reliability of the RSM to select the optimal formulation conditions, Tragacanth gum and stevia can be used to produce a new, reduced-calorie and customer-friendly non-dairy dessert based on almond milk.
Marjan Teimorimanesh; Hajar Abbasi
Abstract
[1][2]Introduction: Vinegar is an ancient fermented food consumed by human since Babylons period. It is a condiment that produced from various carbohydrate sources by alcoholic and subsequently acetic acid fermentation. Alcoholic fermentation is carried out by Saccharomyces cerevisiae, while the acetic ...
Read More
[1][2]Introduction: Vinegar is an ancient fermented food consumed by human since Babylons period. It is a condiment that produced from various carbohydrate sources by alcoholic and subsequently acetic acid fermentation. Alcoholic fermentation is carried out by Saccharomyces cerevisiae, while the acetic acid fermentation is performed by acetic acid bacteria. Most of the acetic acid bacterial strains are classified in the Acetobacter genus and derived from vinegar factories that are able to oxidize ethanol to acetic acid and some strains over oxidize acetic acid into CO2 and H2O (over-oxidation). In acetic acid fermentation, important physical parameters that affect the growth of A.aceti are temperature, aeration and pH. Other most important factors for enhancing production efficiency of acetic acid are the nutrients of substrate for increases microbial activity. Considering the significant role of carbon sources and micronutrients in the fermentation culture to increase the production of acetic acid, in the present study, the effect of adding ammonium phosphate (0- 0.75 g), potassium sulfate (0- 0.75 g) and Saccharomyces cerevisiae (0- 1.5 g), were investigated to increase the production of acetic acid using Acetobacter spp. Materials and methods: Yeast (Saccharomyces cerevisae) was obtained from the Iranian Research Organization for Science and Technology, Department of Biotechnology in Tehran, Iran with code number 5052. All chemicals were from Merck Co. Acetic acid production was performed by Acetobacter spp in a fermenter (Biostat B B.Brun) with a capacity of 10 L which contained 5000 ml of fermentation culture in 9.9 acidity. Mash with a capacity of 3000 ml containing 450 ml of vinegar with 9.9 acidity, 350 ml of ethanol 97%, 2.1 g of dextrose and the rest up to 3000 ml of water was produced and 300 ml of it was injected into the fermenter every 4 hours (in 10 steps). After complete injection, the fermentation operation continued for 9 hours. Agitation speed, aeration rate and temperature in the fermenter were 900 rpm, 50 L/min and 32°C, respectively. Determination of the best conditions for producing acetic acid was performed by Response Surface Methodology (RSM) in the form of central composite design. Independent variables were yeast concentration (0- 1.5 g), concentration of the ammonium phosphate (0- 0.75 g), and the potassium sulfate concentration (0- 0.75 g). RSM models were developed and optimization was done for the highest acidity, activity and oxidation value and the lowest residual alcohol content in the product. Optimal and control samples were examined in terms of qualitative characteristics such as acidity, activity, residual alcohol content, oxidation value, total dissolved solids, reducing sugar, total phenol, ascorbic acid, sulfur dioxide and heavy metals. Comparison of the optimal and control samples was done in a completely randomized design using SAS ver: 9.1 software. Results and discussion: The results showed that increasing the concentration of yeast and ammonium phosphate led to increase the initial and final acidity, activity and oxidation value and decrease the amount of residual alcohol. The effect of increasing potassium sulfate was negative and reduced the initial and final acidity, activity and oxidation value. However, interaction effects of potassium sulfate concentration with other variables at its intermediate levels on reducing the amount of residual alcohol in the product was positive. The optimal levels of the studied variables were determined as 1.5 g of Saccharomyces cerevisiae, 0.75 g of ammonium phosphate and 0.38 g of potassium sulfate. In control sample (without the independent variables), initial and final acidity, activity and oxidation index were lower and the residual alcohol content was higher than the standard level. Therefore, the optimal sample was compared with the control and using industrial activator (Astasome). The optimal sample in terms of initial and final acidity, activity, residual alcohol content and oxidation value had not a significant difference (p> 0.05) with the control sample (containing Astasome). Moreover, the optimal and control samples were not significantly difference in ascorbic acid and reducing sugar (p> 0.05), while the optimal sample in terms of total phenol content, sulfur dioxide and heavy metals like lead, zinc and copper was superior compared to the control sample (p <0.05). Overall, the results of this study indicated the positive effect of yeast, ammonium phosphate, and the potassium sulfate at suitable concentration on qualitative characteristics of acetic acid.The results revealed that using of appropriate amounts of Saccharomyces cerevisiae, ammonium phosphate and potassium sulfate in substrate as a source of micronutrients improve quality of acetic acid production by Acetobacter spp.
Zarrin Nasri
Abstract
Introduction: Licorice is one of the most important medicinal plants in the world. This plant has been used in the world for more than 2000 years and is applied in various industries including pharmaceutical, food and tobacco industries. Iran is one of the best regions in the world in terms of medicinal ...
Read More
Introduction: Licorice is one of the most important medicinal plants in the world. This plant has been used in the world for more than 2000 years and is applied in various industries including pharmaceutical, food and tobacco industries. Iran is one of the best regions in the world in terms of medicinal plants. The roots of the licorice plant are widely used in the food and pharmaceutical industries. These roots are strong natural sweeteners, about 50-170 times sweeter than sucrose. The value of this plant is related to its chemical components. Glycyrrhizin is the most abundant component of this plant and is present in licorice in the form of potassium or calcium salt of glycyrrhizic acid and is considered as an indicator of licorice quality. In recent years, novel extraction methods with different energy sources have been proposed for improving extraction efficiency. Higher extraction efficiencies can be achieved by using microwave, ultrasonic and high pressure methods. In the ultrasonic extraction method, the extraction rate increases due to the presence of cavitation. The cavities formed in the solvent grow and then collapse rapidly, releasing a large amount of energy that increases the local temperature and pressure. Therefore, the solvent penetrates more into the plant cell material and the contents of the plant cells are released into the solvent medium. Also, physical effects such as liquid circulation and turbulence produced by cavitation help to increase the contact surface between the solvent and the plant particles and lead to more solvent penetration into the plant matrix.
Materials and Methods: The aim of this study is to statistically investigate the effect of particle size and licorice root diameter on the rate of glycyrrhizic acid extraction using ultrasonic. The full factorial experimental design method and response surface methodology have been used to determine the levels of the parameters and to model the responses, respectively. Independent variables included particle size of licorice root at three levels (35-60, 60-120, ≥ 120 mesh) and licorice root diameter is at three levels (1-2, 2-3, ≥3 cm). Total extract and glycyrrhizinic acid yield are considered as response variables. The solvent used was ammonia and the analysis of glycyrrhizic acid in the extract was performed by HPLC method. The licorice root used in this research was from Bojnourd region. Monoammonium glycyrrhizic acid (99.5%) was purchased as an HPLC standard from Sigma and ammonia from Merck. The method of glycyrrhizic acid extraction from licorice root was based on the British Pharmacopoeia method in this research.
Result and Discussion: The results showed that regarding the response glycyrrhizic acid yield, the parameter licorice root diameter had a significant effect on the response, but the particle size parameter had no significant effect. Also, two parameters had interaction. Based on the modeling results of the extraction process, the optimal conditions for obtaining the maximum total extract of licorice root included particle size, 125 μm (120 mesh) and licorice root diameter, 3.28 cm, which leaded to 68.16 wt% total extract. The optimal response conditions for glycyrrhizic acid yield from licorice root included particle size, (120 mesh) and licorice root diameter, 2.72 cm, which leaded to the extraction of 6.02 wt%glycyrrhizic acid from the root. Also, a comparison was performed between glycyrrhizic acid extraction from licorice in ultrasonic bath and ultrasonic probe. The results showed that the amount of glycyrrhizic acid extraction
was similar and was equal to 5.5 wt%. The effect of particle size distribution has also been investigated. According to the results in ultrasonic extraction, particle size distribution had a positive effect on extraction.According to the results of this research, the parameter of licorice root diameter had a significant effect on the response of glycyrrhizic acid yield and with decreasing licorice root diameter, the amount of glycyrrhizic acid extraction increased. Also, the efficiency obtained by extraction method in ultrasonic bath is compared with ultrasonic probe. It can be concluded that glycyrrhizic acid extraction from licorice with using ultrasonic is an effective method for extraction
Food Engineering
Mahsa Kamali Sarvestani; Mohebbat Mohebbi; Masoud Taghizadeh
Abstract
Introduction: Celery is one of the most consumed and highly nutritious vegetables with high dietary fiber, phytochemicals, vitamins, and minerals, which offers great benefits for utilization as a functional food ingredient. Fruit and vegetable juice powders have many benefits and economic advantages ...
Read More
Introduction: Celery is one of the most consumed and highly nutritious vegetables with high dietary fiber, phytochemicals, vitamins, and minerals, which offers great benefits for utilization as a functional food ingredient. Fruit and vegetable juice powders have many benefits and economic advantages over their liquid precursors such as reduced volume/weight, reduced packaging, easier handling/ transportation, and much longer shelf-life. Also, powders can be reconstituted to produce juice and used for preparation of products such as snacks, chutney, soups, baby foods, etc. In foam-mat drying, food liquids and pastes are first whipped into stable foam by the addition of different foaming agents or stabilizing agents and then dried in the form of thin layer. This foam structure dries rapidly due to the increase of the surface area of the material by incorporating air/gas and forms a porous structure which gives high quality and instant properties of the dried product. The dried product is scraped off from the drying surface in the form of flakes, which is then converted to a fine powder. Response surface methodology (RSM) is a combination of mathematical and statistical techniques used to investigate the interaction effects of independent variables on responses. There is considerable information on foam-mat dried food powders, but there is no scientific literature related to foam-mat drying of celery juice. The present research was thus focused on optimizing the foaming conditions (WPC as a foaming agent, Xanthan gum (XG) concentration as the stabilizer and whipping time (WT)) to minimize foam density (FD) and drainage volume (DV) using RSM. The effects of drying temperatures on some physicochemical properties of powder were also investigated. Materials and methods: Celery was purchased from the local market.XG and WPC powders were purchased from Sigma Chemical Company (St. Louis, MO) and Milei Company Germany, respectively. Celery juice was extracted by using a juicer machine (Robert Bosch Stand mixer MMB 2000 /05 FD 8611 Type CNSM03EV, 600W, Slovenia). Based on preliminary tests, XG solutions were prepared by dissolving the appropriate amount of the defined gum powder in distilled water and stirring with a magnetic stirrer to achieve a uniform solution. This solution was refrigerated at 4°C overnight to complete hydration. RSM was used to estimate the main effects of the process variables on FD and DV in celery juice foam. The experiment was established based on a face-centred central composite design (FCCD). According to the experimental design, to prepare 100 g of samples, the appropriate amount of celery juice, WPC, and XG solution were poured to a 250 mL beaker. Then the mixture was placed into a water bath for 5 minutes at 55 °C temperature. The mixture was then taken out of water bath and was whipped by a mixer (Gosonic, model No. GHM- 818, 250W, China) with the maximum speed of 5400 rpm at ambient temperature during the given time. The density of foamed celery juice was determined in terms of mass over volume and expressed in g/cm3. To assess foam stability, the drainage test was performed for 1h. Furthermore, the effects of drying temperatures on some physicochemical properties of powders were investigated. Results and discussions: The quadratic model was selected as a suitable statistical model for both FD and DV. ANOVA showed that this model is significant for both responses. Moreover, lack-of-fit was not significant for response surface models at a 95% confidence level, indicating that this model is adequately accurate for predicting responses. Based on the constrain criteria, the optimized foaming parameters were: XG concentration of 0.42% (w/w), WPC concentration of 6% (w/w), and WT of 9.30 min. The amount of FD and FDV for foam at these optimum conditions were 0.4 g/cm3 and 0 ml, respectively. The results showed the moisture content and water activity of the celery powders decreased with the increase in drying temperature. By increasing drying temperature from 40 to 70 °C, bulk density also decreased. Increase in drying temperature results in decrease in moisture content and bulk density. Tapped density generally behaves similar to bulk density because by shaking powder, the space between the particles is filled and occupied volume by the powder is reduced. By increasing in temperature, particle density decreased. Overall, with increasing drying temperature, the porosity of powder increased. Increasing temperature and reducing moisture content, the possibility of approaching and join together of particles is increased and the space between the particles becomes less. The numerical value of the car index parameter in this study was 15.3% to 24.67%. The highest value of flowability related to the sample was dried at 70°c. With decreasing in drying temperature, the moisture content of powders increased and due to forming liquid bridges between particles making them less flowable. The numerical value of the Hausner parameter in this study was 1.15 to 1.32. Except for powder produced at 70 °C, the powder was placed in the intermediate cohesiveness powder class. By increasing drying temperature, the cohesiveness of powder decreased significantly.
Mohammad Amin Mehrnia; Hassan Barzegar; Leila Hagh jou
Abstract
Central composite design response surface methodology was used to optimize polysaccharide extraction from olive leaves. Effect of three independent variables [extraction time (3- 7 hours), extraction temperature (60- 100°C) and water-to-raw material ratio (5-25 mL/g)] on extraction yield were studied. ...
Read More
Central composite design response surface methodology was used to optimize polysaccharide extraction from olive leaves. Effect of three independent variables [extraction time (3- 7 hours), extraction temperature (60- 100°C) and water-to-raw material ratio (5-25 mL/g)] on extraction yield were studied. Extracted polysaccharide was evaluated for antioxidant properties, total phenolic and flavonoid content and its structure and functional groups were studied using FTIR. Rheological properties and flow behavior of polysaccharide were determined by fitting to power law model. The most important parameter in experimental ranges was temperature and the lowest effect was seen in extraction time. Highest extraction yield was obtained at extraction time of 2 hours, extraction temperature of 80.96°C and water-to-raw material ratio of 17.94 mL/g. Antioxidant properties of extracted polysaccharide were measured using DPPH radical at 517 nm that showed notable antioxidant properties. Rheological property of extracted polysaccharide was studied at 1, 2.5 and 5% concentration. Results showed that at high concentration, polysaccharide shows shear thinning behavior. One of the most important obstacles in native polysaccharide applications is their extraction yield. Extract of olive leaf polysaccharide is highly affected by extraction temperature. Extracted polysaccharide showed good antioxidant properties comparing to BHT and phenolic extract of olive leaf. Moreover it could be used for increasing solution viscosity at higher concentrations.
Sedigheh Amiri; Soleiman Abbasi; Hamid Ezzatpanah
Abstract
In this study, microemulsification of orange peel oil (OPO) using Tween 60:propanol with the ratio of 1:1 was studied under different conditions of pH, ionic strength, and sugar concentration.. Results showed that critical temperature (the temperature in which one- phase microemulsion system was still ...
Read More
In this study, microemulsification of orange peel oil (OPO) using Tween 60:propanol with the ratio of 1:1 was studied under different conditions of pH, ionic strength, and sugar concentration.. Results showed that critical temperature (the temperature in which one- phase microemulsion system was still stable) for the microemulsions with higher sucrose concentrations (in the range between 0 to 30%) was lower while by decreasing in sugar concentration, critical temperature shifted to higher temperatures, as it reached to 90°C for the samples without sugar. The prepared microemulsions were stable at 5 and 25°C for seven days, but samples with higher concentrations of sugar (25 and 30%) became turbid at 45°C, whereas all other samples exhibited a one-phase microemulsion system at this temperature. Microemulsions were not stable at -3°C (freezing temperatures). In sensory evaluation, it was observed that the microemulsified OPO was dissolved in water as soon as it was added into the medium, in contrast to free essential oil as it was spreading on the surface of the solution. Encapsulation of OPO caused lower release of aroma, resulting a milder odor and taste (lower intensity) in samples which were preferred by the panelists. The overall acceptability of all samples containing OPO microemulsion was significantly higher than samples with free essential oil.
Fereshteh Hosseini; Zeynab Raftani Amiri
Abstract
In this study, the effect of stevia (0-0.04 g/100g) as a sucrose replacer, milk protein concentrate (mpc) (0-4 g/100g), and modified waxy corn starch (0-3 g/100g) as fat replacers on the physico-chemical and sensory characteristics of 15% fat cream were analyzed using a central composite rotatable design. ...
Read More
In this study, the effect of stevia (0-0.04 g/100g) as a sucrose replacer, milk protein concentrate (mpc) (0-4 g/100g), and modified waxy corn starch (0-3 g/100g) as fat replacers on the physico-chemical and sensory characteristics of 15% fat cream were analyzed using a central composite rotatable design. Response surface methodology was used for optimization of low calorie cream formulation. Results showed that an increase in sucrose substitution with stevia and mpc concentration was followed by an increase in cream acidity, while pH decreased. Increasing sucrose substitution with stevia in cream decreased firmness, apparent viscosity and consistency, whereas increasing concentration of milk protein concentrate and modified starch increased the cream firmness, apparent viscosity and consistency. However, according to multiple response optimization, the optimum levels of 0.034 g/100g stevia, 1.64 g/100g mpc and 2.30 g/100g modified starch predicted acidity 0.15% acid lactic, pH 6.5, firmness 1.4 N, apparent viscosity 28730.3 mPa.s and consistency 0.52 cm/30 s. The calorie value of formulated cream was 46.44% less than the control sample (cream with 30% fat and 12% sucrose), and no significant difference in total acceptance between them was found, while formulated cream had higher score for taste and creamy state.
Zahra Mohammadi; Mahdi Kashani-Nejad; Aman Mohammad Ziaiifar; Mohammad Ghorbani
Abstract
Introduction: The commercial lye peeling method used in kiwifruit processing industry is water and energy intensive process and has negative impact on the environment. Infrared (IR) technology has been proposed as an alternative to food processing technologies with attractive merits such as uniform heating, ...
Read More
Introduction: The commercial lye peeling method used in kiwifruit processing industry is water and energy intensive process and has negative impact on the environment. Infrared (IR) technology has been proposed as an alternative to food processing technologies with attractive merits such as uniform heating, high heat transfer rate, reduced processing time and energy consumption, and improved product quality and safety. However, no previous reports were found on the feasibility of kiwifruit peeling using IR heating technology. Therefore, the goal of this research was to develop a new and sustainable peeling technology for kiwifruit using IR radiation heating.
Materials and methods: A lab scale IR dry-peeling system for kiwifruit was designed and constructed. The system consisted of two major sections including the IR heating and rotating rollers. The rotating kiwifruits (Actinidia deliciosa cv Hayvard) were heated using a ceramic IR element. The effects of IR radiation power (250-850 W), distance between IR emitter and sample (10-70 mm) and heating time (45-125 s) on the peeling performance of kiwifruit were investigated. The lye peeling method including 15% NaOH solution at 95 ͦC for 4 min was selected as a control treatment. The operating parameters of IR peeling were optimized using RSM.
Results and Discussion: The second-order polynomial models predicted by RSM showed a significant fitting (p < 0.0001), and the lack of fit for all fitted models was found to be not significant (p > 0.1105). The validation experiments were in good agreement with the predicted values by the fitted models. The heating with a power of 446 W at the distance of 70 mm for 125 s were found as the optimum operating conditions for kiwifruit IR peeling. The comparison of the peeling performance of kiwifruit peeled by IR and by lye peeling showed that both the IR and lye peeling could produce a satisfactory peelability (> 90%) and ease of peeling (> 4.5) for kiwifruit. The IR peeled kiwi had significantly low weight loss (4.5% vs. 11.7%), surface temperature (64.1 ͦC vs. 95 ͦC) and color difference (2.4 vs. 11.4) and high firmness (57.5 N vs. 40 N) compared to lye peeled treatment. Because the dry-peeling is a chemical- and water- free process, residuals of kiwifruit skins after IR peeling could be easily utilized as value-added by products. Based on the research results, it is concluded that IR dry-peeling has a promising potential for commercialization. This investigation should also help kiwifruit processing industry in developing the environmentally safe IR peeling technique to produce high quality products from kiwifruit.
Samaneh Joodi Attar; Vahid Hakimzadeh; Hassan Rashidi
Abstract
Introduction: Cheese is a dairy product that commonly used and has lots of variety in the world. Among the various types of cheese, UF cheese is attracting more consumers in Iran. The need to change the flavor and make a diversity in this product has been considered for long time. Since high fat foods ...
Read More
Introduction: Cheese is a dairy product that commonly used and has lots of variety in the world. Among the various types of cheese, UF cheese is attracting more consumers in Iran. The need to change the flavor and make a diversity in this product has been considered for long time. Since high fat foods such as cheese are the main cause of some disorders like cordial disease, cancer, obesity and diabetes, formulation of dairy products with modified fat or fat replacer was considered by many researchers and suppliers. Vegetable oils can be used as a substitute for milk fat in cheese. Flaxseed oil consists high level of alfa-linolenic acids (Omega-3) and suitable amount of proteins could noticed as a fat replacer. In this study, we investigated the effect of milk fat replacement with flaxseed oil on the production of functional Feta cheese. The rheological, physicochemical, and organoleptic characteristics of such cheese and its optimal formulation were also determined
Materials and methods: The effect of Flaxseed oil (FSO) at a range of 0-100 % and whey protein concentrate (WPC) (0-15%) was investigated on pH, synersis, Dry Matter, hardness, springiness as physicochemical and mechanical properties and mouth feeling, odor, taste overall acceptance as organoleptic properties of UF cheese production by RSM. For the preparation of cheese, a free fat retentate powder was used. To adjust fat to 20%, cream was used with 70% flaxseed oil and homogenized by ultraturrax method. All of the physicochemical, mechanical and organoleptic tests accomplished according to theIranian national Standards/
Results and discussions: Results showed that by increasing the amount of FSO in the formulation of cheese, pH, stiffness and synersis increased. Also, with increasing flaxseed oil, the elasticity was initially decreased and increased in greater quantities afterward. However, by increasing the WPC, the elasticity decreased. The increase of flaxseed oil had a reversible effect on the taste, smell, color and overall cheese acceptance score compared with the control samples due to the presence of some impurities in oil. Increasing the amount of WPC and FSO also caused a decrease in pH and fat during ripening of cheese. Although increasing the level of WPC improved the odor of cheese, but did not have positive effect on appearance, color and general acceptance. The result of optimization of UF cheese production with the following indices: pH 4.82%, synersis 1.35%, fat 20.3%, dry matter 32.45%, hardness 631.46 nm, elasticity 0.94 mm, color 3.4, Odor 3.1, flavor 2.8, texture 3.1 and final acceptance 3.11, showed that the best formulation needs 96.01% of flaxseed oil and 9.73% whey protein concentrate. Finally, the predicted optimal formula by software was also determined as follow: pH 4.78, synersis 1.27%, fat content 19.8%, dry matter 31.4%, the firmness index 618.02, the elasticity 1.03 mm, and the sensory scores included color 3.4 , odor 3.15, Taste 2.97, Texture 3.64 and Final acceptance 3.21.
Makan Delfanian; Mohammad Hossein Hadad Khodaparast; Seyed Mohammad Ali Razavi; Reza Esmaeilzadeh kenari
Abstract
The central composite rotatable design by response surface methodology was applied for optimization of ultrasonic extraction conditions of Bene hull (Pistacia atlantica subsp. Mutica) polyphenols. The sonication time, temperature and ethanol-water ratio were independent parameters studied for the extraction ...
Read More
The central composite rotatable design by response surface methodology was applied for optimization of ultrasonic extraction conditions of Bene hull (Pistacia atlantica subsp. Mutica) polyphenols. The sonication time, temperature and ethanol-water ratio were independent parameters studied for the extraction optimization. Total polyphenols and antioxidant potentials of extracts in terms of ferric reducing antioxidant potential (FRAP), DPPH scavenging activity and oxidative stability index (OSI) were determined. The obtained data were well consistent with the polynomial equations by significant variation in linear, quadratic and interaction impacts of the process factors. The optimized extraction conditions were sonication time, 26.91 min, temperature, 50.42 °C and ethanol concentration, 55.84%. The total polyphenols, DPPH, FRAP an OSI of optimal extract were 304.47 mg GAE/g, 72.47%, 54.04 mmol/100g and 8.55 h, respectively. High performance liquid chromatography (HPLC) analysis of optimal extract detected presence of epicatechin, chlorogenic, sinapic, caffeic and gallic acids.
Nazanin Abdi; Neda Maftoonazad; Amir Heidarinasab; Fujan Badii
Abstract
Introduction: The date palm (Phoenix dactylifera), is one of the most important plants of arid desert area of the western and southern Asia and northern Africa for over 5000 years. Date fruit has a great importance in nutrition due to being a main source of carbohydrates, but it is low in fat and protein. ...
Read More
Introduction: The date palm (Phoenix dactylifera), is one of the most important plants of arid desert area of the western and southern Asia and northern Africa for over 5000 years. Date fruit has a great importance in nutrition due to being a main source of carbohydrates, but it is low in fat and protein. Also it is a good source of many minerals and high amounts of antioxidants which prevent some diseases. This fruits is an important element in economy of date growing countries. Some factors such as variety, environmental impact of growing regions and large quantities of the produced date causes postharvest losses resulting in lower quality fruits. These amounts of fruit which are not consumed directly as fresh may have been used as raw materials to formulate some products like date syrup, powder, jam, etc. Date powder is a highly nutritional quality sweetener obtained from date for sucrose substitution in confectionary, bakery or ice cream industry. Stickiness is a problem in production of fruit powder during drying, transportation and storage. Stickiness in fruit powder is mainly due to the presence of low molecular weight sugar such as fructose, glucose, sucrose and organic acids in fruits. These compounds are very hygroscopic in the amorphous state and have low glass transition temperature and leads to increase stickiness and decrease stability of the product in room temperature. This research consisted of two major objectives: i) determination of an optimum proportion of date paste, silicon dioxide and maltodextrin and the most suitable temperature of drying; ii) characterization of physicochemical and thermal characteristics of date powder.
Materials and methods: Kabkab date was purchased from local market of Kazeroun, Fars, Iran. Moisture, ash, protein, fat, total sugar and dietary fiber contents were determined by AOAC methods (AOAC, 1997). Date flesh was minced by a kitchen meat grinder to make a smooth paste. Three different proportions of maltodextrin (35, 45 and 55% w/w) and three proportions of silicon dioxide (0, 0.75 and 1.5% w/w) were added to date paste to produce date powders. The mix was then spread to a thickness of about 5 mm on a Teflon coated tray and kept inside an oven dryer at 50, 60 and 70°C. The dry product was then ground in a hammer mill to produce date powder. The powder was immediately collected in plastic pouches and kept in desiccators to avoid moisture absorption from the air. Laboratory test sieves were used to collect date powder with particle size less than 1mm in diameter. Some physical and thermal characteristics of the powders were measured. Response surface methodology with central composite design was applied to minimize total number of experimental runs and to optimize the proportions of maltodextrin and silicon dioxide and also drying temperature. The dependent variables were density, moisture and color parameters. A completely randomized design was applied to analyze the effect of maltodextrin on thermal properties (glass transition temperature and specific heat) of date powder. Significant terms were found using ANOVA (P
Reza Amir Khamirian; Hossein Jooyandeh; Javad Hesari; Hassan Barzegar
Abstract
Introduction: Nowadays an increasing demand for whey products particularly whey protein concentrate (WPC) and whey protein Isolate (WPI) resulted in considerable amount of permeates production, which its rejection causes environmental pollution. The bioconversion of whey and permeate is an appealing ...
Read More
Introduction: Nowadays an increasing demand for whey products particularly whey protein concentrate (WPC) and whey protein Isolate (WPI) resulted in considerable amount of permeates production, which its rejection causes environmental pollution. The bioconversion of whey and permeate is an appealing procedure regarding to human nutrition, particularly for its functional properties. Functional foods are foodstuffs, which have specific functions in the human, resulting health benefits besides energy and nutrients. Fermented dairy products containing probiotic bacteria are group of functional foods, which have received increasing attention in recent years, including the development of the market with large commercial and research interests. Production of probiotic beverages from permeate could be considered as a simple solution to prevent permeate rejection and produce an economical product with appropriate functional properties. Definitely, dairy products are the foremost vehicle for probiotic supplementation. However, other nondairy probiotic products such as fruit and vegetable juices have been shown to afford health benefits. Therefore, the aim of this study was optimizing formulation of permeate-based lemon juice beverage and producing probiotic beverage from optimized beverage.
Materials and methods: Based on primary experiments, lemon juice beverages containing permeate were produced with different concentrations of water (19.77, 30, 45, 60, and 70.22 ml), permeate (12.95, 30, 55, 80 and 97.04 ml) and LEMON juice concentrate (5.95, 8, 11, 14, and 16.04 g). To estimate the impact of these independent variables and determination of optimized sample (non-probiotic beverage), response surface methodology (RSM) founded on central composite design (CCD) was applied. According to CCD design, 20 tests with six replicates as the center points were performed. Quadratic polynomial model were considered for the relationship between the predicted responses with the independent variables. The optimization was performed based on physicochemical (pH, acidity, total solids and brix) and sensory (taste, color, odor, after taste and total acceptability) characteristics of beverage samples. At the second stage, the best sample was inoculated with Lactobacillus acidophilus (La5) and its physicochemical properties, antioxidant capacity, sensory attributes and probiotic cell count were monitored during a 28-day storage period under refrigerator temperature (4°C).
Results and discussion: The results showed that all fixed factors, i.e. amount of water, permeate and lemon juice concentrate, had significant impacts on the physicochemical and sensory properties of lemon juice-permeate beverages. By increasing the amount of water up to 45 ml, permeate up to 55 ml and lemon juice concentrate up to 11 g in the formulation, the taste, after taste and total acceptability scores were significantly (p
Younes Zahedi; Hadi Mahdavian Mehr; Seyed Mohammad Ali Razavi
Abstract
Identification of a new source of hydrocolloids is of interest due to their important effects on the textural attributes of food products. The objective of this study was to investigate the extraction conditions of Plantago major L. seed mucilage using a central composite rotatable design of response ...
Read More
Identification of a new source of hydrocolloids is of interest due to their important effects on the textural attributes of food products. The objective of this study was to investigate the extraction conditions of Plantago major L. seed mucilage using a central composite rotatable design of response surface methodology. Temperature (25–85°C), pH (3–9) and water to seed ratio (50:1-50:4) were the factors investigated. Results showed that temperature was major factor in the extraction yield, whereas water to seed ratio and pH had minor effects on the yield. The maximum and minimum yields were 18.95% (conditions: temperature= 85 °C, water to seed ratio = 31.3 and pH= 6) and 6.35% (conditions: temperature = 25 °C, water to seed ratio= 31.3 and pH= 6), respectively. The optimal conditions were obtained at the temperature of 60 °C, water to seed ratio of 48.9 and pH of 3 in which predicted value for the extraction yield was 11.84%. The rheological properties of the mucilage, extracted at the optimal conditions, were investigated as a function of concentration at three levels of 3, 4 and 5% w/v, and shear rate ranged from 14 to 300s-1. Mucilage dispersions showed non-Newtonian shear-thinning behavior at all studied concentrations. The Power law model well described the rheological behavior of the mucilage solutions with high determination coefficients (R2>0.99). The flow behavior index (n) varied in the range of 0.30 to 0.36. The consistency coefficient (k) was in the range 6.13-17.81 Pa.sn. Overall, Plantago major L. seed mucilage could be attended as a new beneficial source for use as a food thickening agent.
Mohammadmahdi Seyedabadi; Mahdi Kashani-Nejad; Alireza Sadeghi Mahoonak; Yahya Maghsoudlou; Fakhreddin Salehi
Abstract
The turbidity of sour orange juice after juice extraction affects on quality, shelf-life and concentration of juice. Therefore, juice clarification is an important operation in the fruit processing industry. The goal of this study was evaluating the effect of membrane operation parameters including pressure ...
Read More
The turbidity of sour orange juice after juice extraction affects on quality, shelf-life and concentration of juice. Therefore, juice clarification is an important operation in the fruit processing industry. The goal of this study was evaluating the effect of membrane operation parameters including pressure (120-220 kPa) and temperature (25-35 ºC) on the permeate flux and hydraulic resistance of sour orange juice during membrane clarification. Response surface methodology (RSM) was used to optimizing the operating parameters. Results of the experiments showed that the permeate flux was raised with increasing of temperature, but total hydraulic resistance (RT), concentration polarization resistance (Rcp) and gel layer resistance (Rg) was decreased in mentioned condition. The permeate flux, membrane resistance (Rm), RT, Rcp and fouling index was raised with increasing in pressure. The Rm and fouling index are showed different behavior depending on temperatures level. Results of process optimization indicated that the best conditions to maximize of permeate flux, and to minimize of fouling index and RT achieved at 35 ºC and 120 kPa for a maximum desirability of 0.761.
Mahmoud Yolmeh; Mohammad Bagher Habibi Najafi; Reza Farhoosh; Fereshteh Hosseini
Abstract
IntroductionFood consumers tend to use natural products without any synthetic additives. Therefore, many studies have been conducted to investigate the possibility of replacing synthetic additives with natural substances in various food products.Annatto dye is a natural carotenoid pigment extracted from ...
Read More
IntroductionFood consumers tend to use natural products without any synthetic additives. Therefore, many studies have been conducted to investigate the possibility of replacing synthetic additives with natural substances in various food products.Annatto dye is a natural carotenoid pigment extracted from the pericarp of BixaorellanaL. seeds. The major fraction of the annatto extract is 9´-cis-bixin that is soluble in oil and 9´-cis-norbixin is the major dye fraction of the alkaline extract that is soluble in water. Annatto dye creates orange to red color in food and to be used as a natural pigment in a variety of food materials including cheese, butter, margarine, confectionary and bakery products, different kinds of drinks, snacks and jams. In addition, annatto dye has antioxidant and antimicrobial activity.Nowadays, the extraction of natural dye from plant resources has become a common technology. However, complementary information using new methods and optimization of the extraction conditions seems to be necessary in order to accomplish the highest yield of extraction. Response surface method (RSM) is effective and efficient in optimizing color extraction conditions.In this study, the different conditions of extraction process were optimized through RSM in order to obtain maximum yield and best quality of annatto dye.Materials and methodsMaterialsAnnatto seeds were purchased from Hyderabad, India. All solvents were analytical grade, Merck, Germany.Extraction of annatto dyeA certain amount of annatto seeds was soaked in n-hexane for 6 hours in order to remove oils. After filtration, the defatted seeds were used for dye extraction. Since chloroform and acetone showed the highest yields of extraction during preliminary experiments, these two solvents and their mixtures were exploited for the final experiments assigning 0 for pure acetone and 100 for pure chloroform. The extracts were filtered through Whatman filter paper NO.1 and then vacuum-dried in the 1410D-2E vacuum oven (Shel Lab, USA) to produce dye powder. Low temperatures (40°C) were applied to prevent thermal dissociation of conjugated double bonds during drying. Dye measurementThe coloring strength was measured according to Vasu et al. method; model UV-160A spectrophotometer Shimadzu, Japan, at 502 nm in which bixin has the maximum absorbance value when it is dissolved in chloroform.Determination of extraction efficiencyThe obtained powder was weighed and the mass ratio of the powder to the weight of the seeds was taken into account as the extraction yield.Experimental designIn this study, Minitab® software version 16.1.1 (Minitab Inc. USA. 2010), was used and a five level four factor central composition design was created to investigate the effect of the independent variables such as temperature, extraction time, seed to solvent ratio and chloroform concentration on the dependent variables namely the extraction efficiency and absorbance values.Results and DiscussionThe values of R2, R2-adj and R2-pred revealed that the full quadratic models were the most adequate for the extraction efficiency and absorbance values.The all of the linear terms show a significant effect except the extraction time (P< 0.05). The quadric term of extraction time and the seed to solvent ratio also had a significant effect (P< 0.05) on the extraction efficiency, however, the effect of other two quadric terms was insignificant (P> 0.05). The interactive terms of extraction temperature* seed to solvent ratio(X1X3) and the seed to solvent ratio*Chloroform concentration (X3X4) had a significant effect on the extraction efficiency (P< 0.05); however, the other two interactive terms was insignificant (P> 0.05).For the absorbance values, the all of the linear terms show a significant effect (P < 0.05); the quadric term of extraction temperature (X12) and the seed to solvent ratio (X32) also had a significant effect (P< 0.05) on absorbance values, but, the effect of other two quadric terms (X22 and X42) did not show a significant effect (P> 0.05). The all of interactive terms was insignificant (P> 0.05).An increase in the extraction efficiency was observed with the increasing temperature. Banik and Pandey while extracting oleanolic acid from Lantana camararoots demonstrated that as temperature increases extraction efficiency improves too. However, at temperatures higher than 70 °C, the annatto seed pigments were degraded and the response was reduced so the quadratic effect of temperature was negative. The absorbance value was increased by increasing the temperature; however, the absorbance value decreased at higher temperature by thermal decomposition and damage of the conjugate double bond.The absorbance value increased by increasing the chloroform concentration and seed to solvent ratio initially, however, subsequently decreased due to the damage of the conjugate double bond in higher chloroform concentration and saturation of solvent in higher seed to solvent ratio.Temperature of 48.33 ˚C, extraction time of 2 hr, the ratio of seed to the solvent of 12.88 and chloroform concentration of 100% were found to be as the optimum conditions of the process. The extraction efficiency of 3.95 percent of annatto seed and absorbance value of 0.597 were acquired as the predicted results.
Amir Pourfarzad; Mohammad Bagher Habibi Najafi; Mohammad Hossein Hadad Khodaparast; Mohammad Hassanzadeh Khayyat
Abstract
Introduction: Fructans are an important product of the industry of prebiotics. In addition to their interesting nutritional and health benefit properties, fructans are also used in food formulations for their techno-functional properties such as fat substitute, bulk agent, water retention. Serish (Eremurus ...
Read More
Introduction: Fructans are an important product of the industry of prebiotics. In addition to their interesting nutritional and health benefit properties, fructans are also used in food formulations for their techno-functional properties such as fat substitute, bulk agent, water retention. Serish (Eremurus spectabilis) belongs to the family of Liliaceae and geographically distributed in the region of South Asia and Central Asia. Their roots accumulate high levels of fructans during their growth and are traditionally used to cure jaundice, liver disorders, stomach irritation, pimples and bone fractures and even as a glue for industrial application. Recently fructan extraction from numerous plants and fungus has drawn the attention of researchers. Also, several methods for fructan extraction have been developed such as hot-water extraction, precipitation by alcohol and ultrasound-assisted extraction. To the best of our knowledge, there are no reports on the fructan extraction from Serish. The present study is considered the first attempt aiming to determine the optimal conditions for water extraction of Serish fructans. Materials and methods: The Serish root powders were obtained from the local medical plant market, Mashhad, Iran. Moisture, ash, fat, protein, Carbohydrate and total dietary fiber were determined according to standard AOAC methods. All variables were examined in triplicate. Conventional extraction was carried out in a water bath. Total carbohydrate was assayed colorimetrically using the phenol–sulphuric acid method. The concentrations of soluble reducing sugars were measured using a 3,5-dinitrosalicylic acid (DNS) method. The fructan content was measured by the difference between total carbohydrate and reducing sugars. The percentage of fructan yield (%) was evaluated based on equation of Lingyun, Jianhua, Xiaodong & Yalin (2007). The purity was evaluated according to the method of Paseephol, Small & Sherkat (2007). As an index of degree of polymerization, the average chain length, was calculated according to Lingyun, Jianhua, Xiaodong & Yalin (2007). A Box-Behnken design was constructed using the software Design Expert Version 6.0.10 and was used for estimating the effect of independent variables on the extraction parameters. Three extraction variables considered for this research were x1 (extraction time), x2 (extraction temperature) and x3 (water: solid) for conventional extraction method. Lack of fit, coefficients of determination (R2), adj-R2, coefficient of variation (CV) and significant probabilities were calculated to check the model adequacy. Optimization was based on generation of the best results for fructan extraction. In order to determine the validity of the model, the experimental and predicted values were compared by paired t-test. Results & discussion: It has a marked amount of protein and fats. The ash value is relatively high, suggesting an important mineral content. The composition of total fiber suggests its possible use as a source of dietary fiber for enrichment of foods. In addition, results show that Serish root powder is a polysaccharide-rich material. The results indicated that extraction temperature has the most effect on the extraction yield. Increase of time, temperature and water to solid ratio led to significantly increase in extraction yield. Considering the significant quadratic term of extraction time, it becomes clear that yield rises as extraction time increase from 0 to 22.5 min but it decreases at higher times. The yield increase between 0 to 22.5 min might be due to the time requirement for contact of fructan to the release medium where the liquid penetrated into the Serish powder, dissolved the fructan and subsequently diffused out from the root. On the other hand, the yield decrease after 22.5 min may be ascribed to degradation of fructan to free sugar and enhancement of impurities extraction at higher times. When extraction time goes by certain threshold, the yield started to decrease. The yield showed a large tendency to increase when the extraction temperature was increased. This is maybe due to the enhancement of the mass transfer resulting from the increased solubility of fructan and the decreased viscosity of the solvent. Yield was increased by portion of water to solid. This might be attributed to the availability of liquid that increases the driving force of fructan out of the root. Based on the sum of squares, temperature had the most effect on degree of polymerization. The results indicated that increase of time, temperature and W/S ratio resulted in increase of the degree of polymerization which might be due to the enhancement of overall carbohydrates extraction. On the other hand, the degree of polymerization of extracted fructan was lower than 10. This is probably because the disruption of fructan branch to reducing sugars with increasing temperature that leads to chain length decrease. Thus, the produced oligosaccharides could be used as sweetener. W/S ratio had the most effect on purity. The results showed that increase of time, temperature and W/S ratio resulted in increase of the purity which might be due to the enhancement of overall carbohydrates extraction. With the increase in extraction time, the purity of extract increased gradually, but decreased after the purity reached a maximum at 22.5 min. This decrease may be ascribed to degradation of fructan to free sugar and enhancement of impurities extraction at higher times. Multiple response optimizations were performed to measure the optimum levels of independent variables to achieve the desired response goals. Extraction yield and purity were desired maximal. Conclusion: The final results for this optimization was found to be extraction time of 28.38 min, extraction temperature of 88ºC and water to solid ratio of 50:1 v⁄w. Response surface methodology was an efficient statistical tool to model the influence of extraction conditions of fructan from Serish root powder on the extraction yield. These results also suggested that by modifying the proportion of these components, a large range of variations may be obtained. There was a good agreement between the experimental data and their predicted counterparts, showing the effectiveness of the proposed conditions and reliability of Box–Behnken analysis on fructan precipitation.
Samira Tizchang; Mahood Sowti Khiabani; Reza Rezaeemokaram
Abstract
Nisin has numerous applications as a natural preservative in foods, including dairy product, canned food, processed cheese and milk. Several studies demonstrated that proteolytic degradation and the interaction of nisin with food components might result in decreased its antimicrobial activity. Encapsulation ...
Read More
Nisin has numerous applications as a natural preservative in foods, including dairy product, canned food, processed cheese and milk. Several studies demonstrated that proteolytic degradation and the interaction of nisin with food components might result in decreased its antimicrobial activity. Encapsulation of antimicrobial peptides into nanoliposomes may offer a potential alternative to protect antimicrobials, enhancing their efficacy and stability for food applications. In first stage of this research, Response Surface methodology was used for optimization of nanoliposomes produced by heating method. A central composite design (CCD) consisting of 18 experimental run with three independent variables: phospholipid concentration (2-30 mM), stirring speed (500-1360 rpm) and processing time (30-90 min) were used and their effects on size of nanliposome were evaluated.In the next stages, stability of nanoliposomes was investigated during 2 month. The optimum operating conditions obtained from the quadratic form of RSM model for particle size were phospholipids 30 (mM), stirring speed 930 (rpm) and process time 90 (min). The results of stability indicated that samples in the range of 400 to 500 nm were stable up to 2 month (P > 0/05) but samples larger than 500 nm were unstable during 2 month but stable up to 1 month(P> 0/05).
Mohebbat Mohebbi; Elham Mahdian
Abstract
Foaming conditions of the red beet (Beta vulgaris L) puree were optimized using response surface methodology (RSM) with respect to Arabic gum concentrations (0.01 – 0.4% w/w), red beet puree (40 _ 60% w/w),egg white concentration( 5 _ 15% w/w) and whipping time (3 – 9 min) for minimum foam ...
Read More
Foaming conditions of the red beet (Beta vulgaris L) puree were optimized using response surface methodology (RSM) with respect to Arabic gum concentrations (0.01 – 0.4% w/w), red beet puree (40 _ 60% w/w),egg white concentration( 5 _ 15% w/w) and whipping time (3 – 9 min) for minimum foam density and foam drainage volume as response variables. Foams were prepared from various pulp concentrations by adding various concentrations of egg white as foaming agent and Arabic gum as stabilizer at different whipping time. The optimized conditions after the numerical and graphical optimization for maximum stability and minimum foam density were found at Arabic gum (0.29% w/w), egg white (15% w/w), red beet Puree (60% w/w), and whipping time (9 min).The results showed that the stability of foams increased with increasing Arabic gum concentration( p
Ghasem Yousefi; Zahra Emam-Djomeh
Abstract
The present research surveyed the effect of five factors including: microwaves power, air temperatures and its flow rates, microwaving time onset and amount of substances on the requested time and energy for combined fluidized bed- microwaves drying of black raspberry into 50% dry base wet content. Response ...
Read More
The present research surveyed the effect of five factors including: microwaves power, air temperatures and its flow rates, microwaving time onset and amount of substances on the requested time and energy for combined fluidized bed- microwaves drying of black raspberry into 50% dry base wet content. Response surface methodology and Central composite was used as experimental design. Multiple linear regression was used for obtaining second polynomials models for each analyses followed by ANOVA analysis in order to confirming the adequacy and accuracy of resulted models. Using the empirical resulted model the relationship between variables and responses were determined via response surface method. Correlation coefficients of the regression models were 0.964 and 0.970 respectively for the drying time and energy consumption. The Optimized drying condition were including; 600 watts for microwaves power and microwaving onset from that time as the moisture content was 344% decreased,73 g for amount of substances, and 85˚C and 15 m.s-1 for air temperatures and its flow rates respectively. Under mentioned conditions, the fitted model was predicted 52.66 Min and 65.2 Kj respectively for the requested drying time and energy consumption at combined drier. As a conclusion, the results showed that requested drying time and energy consumption were decreased with increasing of temperatures, microwaving time and its power, and decreasing of air flow rates. In this regard, the drying kinetics curve samples were drawn under the conditions listed that showed drying time is reduced to 76% with increasing temperature from 55 to 85 and use the microwave reduced drying time until 30 to 80%.
Mehdi Jalali; Mohammad Hossein Hadad Khodaparast; Eisa Jahed
Abstract
In this study , response surface methodology and face central composite design in order to investigate decolorization and clarification extraction of Kaluteh date was used for the production of liquid sugar. The optimum amount of bentonite ( 1-3 g/l ) and gelatin ( 0/02-0/08 g/l ) was determined that ...
Read More
In this study , response surface methodology and face central composite design in order to investigate decolorization and clarification extraction of Kaluteh date was used for the production of liquid sugar. The optimum amount of bentonite ( 1-3 g/l ) and gelatin ( 0/02-0/08 g/l ) was determined that the desired amount of bentonite and gelatin , 3 and 0/05 ( g/l ) , respectively. To determined the optimum conditions for maximum activity of these two compounds for clarification with regard to fixed amount of bentonite and gelatin , three factors determine the temperature ( 30-70 °C) , pH ( 4-6 ) and time ( 40-120 min ) was implemented. Parameters consists of the colors , ash and absorbance. Bentonite and gelatin at low temperature and pH with over time , more active and reduce the mount of impurities. The least amount of this responses for the color at 420( nm) , ash and absorbance at 660 (nm),4302 Icumsa ,0/421 % and 0/059 ,respectively. By comparing amounts in the optimum point the clear syrup by bentonite and gelatin ,the initial syrup ,it was found that this technique able to reduce the mount syrup color ,ash and absorbance ,68/25 % , 8/7 % and 89/46 % ,respectively.
Elham Garmsiri; Masoud Rezaei; Amirreza Shaviklo; Aria Babakhani
Abstract
Seaweeds are the novel bioactive compounds resources with antioxidant activity. The aim of this study was to evaluate the efficacy of microwave radiation on antioxidant compounds extracted from red algae Hypneahamulosa and optimal extraction conditions using response surface methodology (RSM).. Independent ...
Read More
Seaweeds are the novel bioactive compounds resources with antioxidant activity. The aim of this study was to evaluate the efficacy of microwave radiation on antioxidant compounds extracted from red algae Hypneahamulosa and optimal extraction conditions using response surface methodology (RSM).. Independent variables were time (4,8,12 min), acetone/water concentration (50%,75% ,100% acetone) and power microwave (200,300.400 W). Antioxidant activity of red algae was measured using DPPH radical scavenging activity assay.DPPH value varied from 4.19 to 72.99%. The optimal extraction conditions was include acetone concentration of 50%, at 12 min and microwave power of 200 W.The actual experimental values were in close agreement with the predicted values from the developed quadratic polynomial equation .R-squared was obtained99% that shows suitability of the model useded and the success of RSM in optimizing the extraction conditions.
Amir Pourfarzad; Mohammad Hossein Hadad Khodaparast; Mahdi Karimi; Seyed Ali Mortazavi
Abstract
The effect of adding sodium stearoyl-2-lactylate (SSL) and propylene glycol (PG) (0 - 0.5 g/100g) to emulsifier gel formulation on the crumb and crust characteristics of Barbari bread fortified with soy flour in order to optimize these characteristics were evaluated. The obtained results showed that ...
Read More
The effect of adding sodium stearoyl-2-lactylate (SSL) and propylene glycol (PG) (0 - 0.5 g/100g) to emulsifier gel formulation on the crumb and crust characteristics of Barbari bread fortified with soy flour in order to optimize these characteristics were evaluated. The obtained results showed that addition of SSL caused an increase in the crumb and crust L* and cell density. The a*, b*, average cell size and porosity of bread crumb decreased by increasing SSL. PG had increasing effect on b* of crumb and decreasing effect on L* of crust. However, no significant difference (p ≥ 0.05) was observed in a* and b* of crust. The results for optimization using central composite design suggested that a mixture containing 0.5 g/100g of SSL and 0.5 g/100g of PG could be a proper improver gel to achieve the best characteristics.