Food Chemistry
Amir Kazemi; Asghar Mahmoudi; M. Khojasteh Najand
Abstract
Meat is a significant source of nutrition and has an important role in the human diet, and lack of monitoring of the quality and safety of meat can result in it being highly perishable and posing health threats. Determining safety through chemical methods is costly and time-consuming, without the ability ...
Read More
Meat is a significant source of nutrition and has an important role in the human diet, and lack of monitoring of the quality and safety of meat can result in it being highly perishable and posing health threats. Determining safety through chemical methods is costly and time-consuming, without the ability to monitor in real-time. Therefore, nowadays assessing the quality of meat considers spectral techniques such as spectroscopic and spectral imaging, as promising tools and these strategies have recently undergone swift advancements and garnered heightened public attention. Therefore, the purpose of the present review paper is to present an overview of the latest advancements in spectral methods for assessing ground meat safety. The basic working principles, fundamental settings, analysis process, and applications of these techniques are described. By investigating the practical utilization possibilities of spectral detection technologies in the evaluation of meat safety, researchers discussed the present challenges and upcoming research prospects. Furthermore, the newest advances in the application of artificial intelligence accompanied by the mentioned techniques were also discussed.Meat is a significant source of nutrition and has an important role in the human diet, and lack of monitoring of the quality and safety of meat can result in it being highly perishable and posing health threats. Determining safety through chemical methods is costly and time-consuming, without the ability to monitor in real-time. Therefore, nowadays assessing the quality of meat considers spectral techniques such as spectroscopic and spectral imaging, as promising tools and these strategies have recently undergone swift advancements and garnered heightened public attention. Therefore, the purpose of the present review paper is to present an overview of the latest advancements in spectral methods for assessing ground meat safety. The basic working principles, fundamental settings, analysis process, and applications of these techniques are described. By investigating the practical utilization possibilities of spectral detection technologies in the evaluation of meat safety, researchers discussed the present challenges and upcoming research prospects. Furthermore, the newest advances in the application of artificial intelligence accompanied by the mentioned techniques were also discussed.Meat is a significant source of nutrition and has an important role in the human diet, and lack of monitoring of the quality and safety of meat can result in it being highly perishable and posing health threats. Determining safety through chemical methods is costly and time-consuming, without the ability to monitor in real-time. Therefore, nowadays assessing the quality of meat considers spectral techniques such as spectroscopic and spectral imaging, as promising tools and these strategies have recently undergone swift advancements and garnered heightened public attention. Therefore, the purpose of the present review paper is to present an overview of the latest advancements in spectral methods for assessing ground meat safety. The basic working principles, fundamental settings, analysis process, and applications of these techniques are described. By investigating the practical utilization possibilities of spectral detection technologies in the evaluation of meat safety, researchers discussed the present challenges and upcoming research prospects. Furthermore, the newest advances in the application of artificial intelligence accompanied by the mentioned techniques were also discussed.
Food Chemistry
Fatemeh Sadat Khanagaei; Fateme Akrami Mohajeri; Elaheh Askari; Hossein Fallahzadeh; Elham Khalili Sadrabad
Abstract
IntroductionCanola oil with high unsaturated fatty acids and nutritional value is susceptible to oxidation due to lipid oxidation. Lipid oxidation leads to a reduction of nutritional quality, sensory and safety characteristics of the vegetable oils. To retard lipid oxidation, the synthetic antioxidants ...
Read More
IntroductionCanola oil with high unsaturated fatty acids and nutritional value is susceptible to oxidation due to lipid oxidation. Lipid oxidation leads to a reduction of nutritional quality, sensory and safety characteristics of the vegetable oils. To retard lipid oxidation, the synthetic antioxidants are usually used in the vegetable oils. By increasing the public concern about health problems of synthetic antioxidants, the use of natural antioxidants is increasing. Lavender (Lavandula officinalis) is an evergreen plant native to the Mediterranean. The presence of linalool, linalyl acetate, 1,8-cineole B-ocimene, terpinen-4-ol, and camphor in lavender essential oil, make it a good natural antioxidant which could use in food industry. Therefore, in the current research, it was aimed to investigate the antioxidant effect of lavender essential oil on the stability of canola oil. Materials and MethodsThe lavender was bought from Golestan province and dried in room temperature. The lavender essential oil was prepared by hydro distillation of flower heads. Then, the phenolic compounds were determined using GC-MASS. The Total phenolic content (TPC), flavonoid content (TFC), and antioxidant activity (FRAP and DPPH) of lavender essential oil were evaluated. Then, lavender essential oil in concentrations of 200, 400, 600, 800, and 1000 mg/kg was added to the crude canola oil compared to canola oils without antioxidants and synthetic antioxidant TBHQ (100 and 200 mg/kg). Then, the samples were kept at 60 to 70 oC for 12 days. The analysis was done in an interval of 24 h for 12 days. Lipid oxidation of samples was determined by peroxide value, p-anisidine value, TOTOX value, and thiobarbituric acid each 24 h. analyses of Data were done by one-way analysis of variance (ANOVA) using SPSS software and the means were compared by the Tukey multiple range test. Results and Discussion According to the GC-MS analysis, 1, 8-cineole (59.45 %), linalool acetate (32.48 %), linalool (6.31 %), and limonene (1.06 %) were identified as the major constituent of lavender essential oil. Also, Total phenol, flavonoid, FRAP and DPPH (IC50) contents of lavender essential oil were 71.55 mg GAE/g, 82.66 mg of rutin/100 g, 12.63 mmol H2SO4, and 55.88 mg/ml, respectively. According to the results, all lipid oxidation indexes were increased after twelve days of storage. In general, lavender essential oil was effective in retarding the oxidation of canola oil at a temperature of 70 oC. Also, the concentration of 1000 mg/kg of the essential oil had antioxidant activities similar to the TBHQ in 100 mg/kg concentration. Conclusion It was showed that lavender essential oil, as a natural antioxidant, has the ability to react with the radicals resulting from the oxidation of lipids and causes the interruption of oxidation chain reactions and increases the time and decreases the rate of oxidation. As observed, the oxidation of canola oil in all samples, especially the samples without antioxidants or antioxidants to a lesser extent, increased significantly with increasing storage time. In general, lavender essential oil at L1000 concentration and also in some oxidation indices of lavender essential oil at L800 concentration has an effective role in preventing the oxidation of canola oils like synthetic antioxidant TBHQ.
Food Chemistry
Atena Modiri Dovom; Akram Arianfar; Sara Naji-Tabasi; Vahid Hakimzadeh
Abstract
IntroductionMayonnaise is a products which is widely popular in most countries. Apart from the desirable taste of this product as a seasoning, plays an effective role in providing nutrients and energy for humans. Dietary mayonnaise, is semi-solid or liquid product prepared from emulsification fat substitutes ...
Read More
IntroductionMayonnaise is a products which is widely popular in most countries. Apart from the desirable taste of this product as a seasoning, plays an effective role in providing nutrients and energy for humans. Dietary mayonnaise, is semi-solid or liquid product prepared from emulsification fat substitutes and vegetable oils with vinegar and other additives with less energy and fat. Fat has more calories (9 kcal/g) compared to protein and carbohydrates (4 kcal/g). Mayonnaise is an oil-in-water emulsion and due to having high amounts of fat it causes cardiovascular diseases. Gums are part of construction formula in low fat products to create texture. Due to the great desire to consume low-fat products and also the wide use of this sauce, production of low-fat mayonnaise is important. The purpose of this research was to develop reduced fat mayonnaise using stabilized nano emulsion with casein complex Pickering and Gadomeh Shirazi gum. Materials and MethodsMayonnaise with reduced oilcontains 30, 40 and 50 percent Pickering emulsion replacement oil respectively at the level of 42, 32 and 22 percent produced and compared with the control sample. Centrifugal and time stability tests, textural features, color characteristics, morphology, organoleptic properties were evaluated. Results and DiscussionThe results showed as the replacement percentage increases nano emulsion containing Pickering particles and reducing the percentage of fat in mayonnaise emulsion stability she found her mayonnaise sauce although at a replacement level of 30% nano emulsion, this decrease in stability was not significant (P<0.05). In the time stability test low-fat mayonnaise with an increase in the percentage of nano emulsion replacement, After 90 day’s significant difference between the control sample and mayonnaise no significant difference was observed with oil reduced by 30 and 40%. In the colorimetry test it showed that among the factors L*. a*. b statistically with the sample there was a significant difference (P≤0/05). Brightness In the witness sample, it was 48/85 in connection with RFM50% the least complex of particles Gadomeh Shirazi gum and casein protein and in relation to RFM30% the most complex of particles Gadomeh Shirazi gum and casein were used. Due to the presence of nanoemulsion contains complex particles Gadomeh Shirazi gum particles and protein. The brightness has decreased in general, from the RFM50% sample up to RFM 30% samples simultaneous with increasing amount of nanoemulsion and reduce the amount of fat the brightness is reduced. ConclusionBy replacing the nano emulsion and reducing the amount of fat in the structure of the sauce the amount of tissue stiffness decreased and pheneritis increased. The sensory test of the samples showed, the witness sample has the most general acceptance but there is a significant difference between the samples there was no reduced-fat mayonnaise with the control. Investigating the characteristics of mayonnaise with reduced fat using nanoemulsion stabilized with complex Pickerings casein and Shirazi Gadomeh gum the results showed that with the increase, reduce the amount of oil up to 30%, Sensory and texture characteristics in a meaningful way decreased. But oil reduction up to 50% in the presence of Pickering nanoemulsion preserve textural features and promoted in some cases. All emulsions produced of favorable stability during storage and centrifugation had. Best stability in control and sample RFM-30% was observed. Based on the results, use of nanoemulsion maintains quality characteristics mayonnaise with oil especially reduced in the sample RFM 30%, it was. Also note to the point that Pickering emulsion structure in the digestive system high stability against digestion, is hope Pickering nanoemulsion structure in the production of food products various low-fat items be investigated further.
Food Chemistry
Zahra Khodakaramifard; Hannan Lashkari
Abstract
Introduction
The date palm (Phoenix dactylifera L.) plays an important social, environmental, and economical role for many people living in arid and semiarid regions of the world. Date fruit is one of the major agricultural crops in the East Asia region, where about 90% of the world's dates are cultivated. ...
Read More
Introduction
The date palm (Phoenix dactylifera L.) plays an important social, environmental, and economical role for many people living in arid and semiarid regions of the world. Date fruit is one of the major agricultural crops in the East Asia region, where about 90% of the world's dates are cultivated. Dates are rich in certain nutrients and provide a good source of rapid energy, due to their high carbohydrate content (70–80%). Moreover, date fruits contain fat (0.20–0.50%), protein (2.30–5.60%), dietary fibre (6.40–11.50%), minerals (0.10–916 mg/100 g dry weight), and vitamins (C, B1, B2, B3, and A) with very little or no starch. In addition to the direct consumption of the fruit, various industrial products are also extracted derived from this product, including date juice, date honey, liquid sugar, vinegar, alcohol, caramel, date paste and date chocolate. The annual production of one million and 400 thousand tons of dates in Iran has made Iran the second pole of date production in the world after Egypt. Zarin Dasht region is located in Fars province, and the annual production of dates in this region reaches more than 1000 tons. The aim of the present work was to investigate the chemical composition, carbohydrate, and antioxidant capacity of two cultivars of Zarin Dasht dates.
Materials and Methods
After collection, all date fruits were washed with tap water, and the seeds were then removed, and the flesh were shade dried at room temperature. The dimensions and area of the imaged surfaces were measured by the physical properties measurement device in 100 repetitions. The working principle of this device is based on image processing technique. By placing the product in three different positions and perpendicular to each other, pictures of the date samples were taken individually. Date mass was obtained using a sensitive digital scale with an accuracy of 0.01 g. The displaced water method was used to determine the volume and density of each date seed. Bulk density, date porosity, geometric mean diameter, sphericity coefficient and surface area of the samples were determined. The amount of moisture was determined by weight method, ash by burning in an electric furnace, titratable acidity based on malic acid and pH of the samples were measured by a digital pH meter. To measure the amount of total phenol in the fruit, Folin–Ciocalteu reagent was used and the absorbance of the reaction mixture was read at 750 nm by a spectrophotometer. The amount of total phenol was reported in terms of gallic acid. The antioxidant capacity was determined through the neutralization of free radical 2 and 2 diphenyl 1-picrylhydrazyl (DPPH). To measure the sugar of all samples, first a standard curve was drawn from the glucose solution in different concentrations, then the sugar content of the samples was measured in milligrams per gram of fresh weight at 490 nm using the sulfuric phenol method. The amount of crude fibre was calculated according to the standard method of AOAC-991/43. The amount of fat was obtained with the Universal Extractor E-800 device for 3 hours at a suitable temperature and in 250 cc of n-hexane solvent. Finally, the statistical analysis of the data was done factorially and in the form of a completely random design in 3 replications using SAS 4, 9 software and the comparison of the means was done using the LSD test at a probability level of 1%.
Results and Discussion
According to the results of this research, there was a significant difference in all qualitative traits except pH (P<0.01). In comparing the characteristics of the palms of two cultivars, it was observed that the highest amount of fibre (1.78 %), titratable acid (0.59 %), ash (1.64 %) and fat (0.85 %) is related to Shahani cultivar,and the highest amount of total phenol (8.1 mg/gFW), DPPH inhibitory property (13 %), moisture (18.7%), sugar (63.8 %), protein (0.29 %) and pH (5.74) belonged to Khassui cultivar. Also, comparing the kernel characteristics of two cultivars, it was observed that the highest amount of ash (3.17 %), total phenol (10.8 mg/gFW), antioxidant property (72 % DPPH inhibition), protein (2.55 %), pH (6.11) and fat (9.20 %) related to the kernel of Shahani variety and the highest amount of fibre (26.2 %), moisture (5.26 %), sugar (15.8 %) and titratable acid (0.38 %) belonged to the kernel of Khassui cultivar. Overall, the kernel of Shahani variety had more DPPH inhibitory power among all the samples.
Food Chemistry
Dara Rezakhani; Abdolmajid Mirzaalian Dastjerdi; Somaye Rastegar
Abstract
The sapodilla fruit has a limited shelf life due to its perishability and rapid moisture loss. The application of edible coatings has attracted much interest because they are effective in prolonging the shelf life of fruits. This study aims to evaluate the effectiveness of an edible coating made from ...
Read More
The sapodilla fruit has a limited shelf life due to its perishability and rapid moisture loss. The application of edible coatings has attracted much interest because they are effective in prolonging the shelf life of fruits. This study aims to evaluate the effectiveness of an edible coating made from xanthan gum (XG) (0.1% and 0.2%) combined with oleic acid (Ol) (1%) in prolonging the shelf life of sapodilla fruit at 8 ± 1 οc and a relative humidity (RH) of 85-90%. Weight loss was significantly reduced in the treated fruits, with the minimum weight loss observed in the Xan 0.2% + Ol treatment. Except for the Ol treatment, the other treatments showed a higher level of firmness compared to the control. At the end of the experiment, the treatments significantly reduced fruit respiration. The treated fruits also showed significantly increased antioxidant capacity and higher levels of ascorbic acid compared to the control. The lowest TSS (22.8%) level was noted in the Xan 0.2 + Ol treatment. Moreover, the results showed that fruit treated with Xan 0.1% + Ol coating exhibited higher activity in the superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) enzymes compared to the fruit treated with Xan 0.2 + Ol coating and the control samples. In general, fruits treated with Xan 0.2 + Ol and Xan 0.1% + Ol demonstrated the highest overall quality compared to the control and other treatments. Therefore, the application of these treatments is recommended for maintaining the quality of sapodilla fruit.
Food Chemistry
Amir Kazemi; Asghar Mahmoudi; Mostafa Khojastehnazhand; Seyyed Hassan Fattahi
Abstract
Wheat flour is one of the most important and strategic food resources especially in developing countries. The addition of Sodium hydrosulfite to flour for improving some appearance features can have dangerous impacts on the consumer health. Therefore, detection of this harmful substance is great practical ...
Read More
Wheat flour is one of the most important and strategic food resources especially in developing countries. The addition of Sodium hydrosulfite to flour for improving some appearance features can have dangerous impacts on the consumer health. Therefore, detection of this harmful substance is great practical significance. In the present study, the potential of Fourier transform-mid infrared (FT-MIR) spectroscopy in 400-4000 cm-1 for the fast detection of Sodium hydrosulfite powder in wheat flour was investigated. After getting the spectral data from samples, firstly some preprocessing methods were used to correct harmful and unwanted effects on spectral data, and then Principal Component Analysis (PCA) as unsupervised and Support Vector Machine (SVM) and Artificial Neural Network (ANN) models as supervised classification models and Partial Least Square Regression (PLSR) as regression model were applied to detect and quantify the adulteration in pure flour samples. The best outcomes were the accuracy of 86.66 and 86.70 for SVM and ANN models with S-G + D2 + SNV preprocessing, respectively and R2p = 0.99 For PLSR model.
Food Chemistry
Maryam Hashemi; Seyyed Hossein Hosseini Ghaboos; Abolghasem Seraj
Abstract
In this research, the effect of protease enzyme type (pepsin and pancreatin) and hydrolysis time (40-200 minutes) on the degree of hydrolysis and antioxidant properties (DPPH radical scavenging activity, Fe chelating activity, Fe reducing power and total antioxidant capacity) of flaxseed meal protein ...
Read More
In this research, the effect of protease enzyme type (pepsin and pancreatin) and hydrolysis time (40-200 minutes) on the degree of hydrolysis and antioxidant properties (DPPH radical scavenging activity, Fe chelating activity, Fe reducing power and total antioxidant capacity) of flaxseed meal protein hydrolysates was investigated. The results showed that increasing the hydrolysis time increased the degree of hydrolysis, and the samples obtained from pancreatin had a higher degree of hydrolysis than pepsin. The highest activity of Fe2+ chelating (53.71 ± 0.45%) and Fe3+ reduction (1.32 ± 0.02, absorbance at 700 nm) was achieved by pancreatin after 200 minutes of hydrolysis. Pancreatin samples were more capable of inhibiting DPPH free radicals than pepsin, and their activity increased with increasing time up to 160 minutes. The highest total antioxidant capacity (1.36 ± 0.08 absorbance at 695 nm) among the samples was obtained after 160 minutes of hydrolysis with pancreatin. The antioxidant capacity of flax seed protein hydrolysates in inhibiting DPPH radical, Fe chelating activity, and total antioxidant capacity was lower than the antioxidant capacity of vitamin C at a concentration of 50 (mg/ml), but it had more Fe reducing power than vitamin C. Therefore, it can be concluded that compared to pepsin, pancreatin had a greater ability to produce flaxseed protein hydrolysates with significant antioxidant properties. According to the results, flaxseed protein hydrolysates from pancreatin enzyme and a hydrolysis time of 160 minutes have the ability to be used in food formulations to produce functional products.
Food Chemistry
Sakineh Molaei Mohammad Abadi; Somaye Rastegar
Abstract
This study aimed to determine the effects of preharvest spraying of melatonin and postharvest immersion in xanthan gum on the quality and postharvest performance of Orlando tangelo mandarin fruits. After selecting suitable and uniform trees, melatonin foliar spraying was performed at three different ...
Read More
This study aimed to determine the effects of preharvest spraying of melatonin and postharvest immersion in xanthan gum on the quality and postharvest performance of Orlando tangelo mandarin fruits. After selecting suitable and uniform trees, melatonin foliar spraying was performed at three different concentrations: 0,100 μM, and 200 μM. Foliar spraying was performed one month before harvest and was repeated three times at weekly intervals. Furthermore, the fruits were immersed in two different concentrations of xanthan gum (0.1% and 0.2%) postharvest, these fruits were stored in a cold room at 5 ± 1 °C. Evaluation of fruit characteristics was carried out at the time of harvest and after 45 and 90 days of cold storage. The results showed that foliar spraying of melatonin at a concentration of 100 μM showed the highest weight and pulp of the fruit. Furthermore, melatonin treatment resulted in higher levels of ascorbic acid and increased fruit acidity compared to the control. During storage, fruits treated with melatonin and xanthan coatings showed better quality than those of the control. At the end of the experiment, the lowest weight loss was observed in fruits treated with 200 μM melatonin + 0.1% xanthan. The highest ascorbic acid content was observed in the 100 μM melatonin +0.1% xanthan. The maximum antioxidant activity was observed in 100 μM and 200 μM +0.1% xanthan and also 100 μM melatonin alone. In general, the findings suggest that preharvest foliar spraying and the postharvest application of xanthan coatings can be effective strategies for maintaining Orlando tangelo quality during cold storage.
Food Chemistry
Mozhgan Akbari; Reza Farhoosh; M. Moeenfard
Abstract
IntroductionToday, many edible oils such as palms, corn, soybeans and sunflowers are used in food preparation. Essential oleic, linoleic and linolenic fatty acids, found abundantly in olive, sunflower and soybean oils, respectively, play an important role in maintaining health. Antioxidant compounds ...
Read More
IntroductionToday, many edible oils such as palms, corn, soybeans and sunflowers are used in food preparation. Essential oleic, linoleic and linolenic fatty acids, found abundantly in olive, sunflower and soybean oils, respectively, play an important role in maintaining health. Antioxidant compounds are used to increase the shelf life of oils, which are classified into two groups of natural and synthetic antioxidants based on the source of production. Phenolic acids are a subset of a large group of phenolic compounds that are used as natural antioxidants in industry. Gallic acid is much stronger than protocatchuic acid due to its three hydroxyl groups. However, the presence of more than three hydroxyl groups does not seem to increase the antioxidant effect in oily systems. The position of the hydroxyl group on the aromatic ring also affects the antioxidant activity, so that the replacement of the hydroxyl group in the ortho and para position increases the antioxidant activity of phenolic acids. Methyl gallate, which is widely found in plants and polyphenolic secondary metabolites, is a natural antioxidant. Despite efforts to date, no suitable natural antioxidant has been proposed to control the thermal oxidation of oils at high temperatures. Therefore, due to the widespread use of oils in food, the thermal stability of natural antioxidants gallic acid and methyl-gallate compared to the powerful but synthetic antioxidant TBHQ, depending on the degree of satiety of the lipid system (sunflower oil and olive oil) and 80 degrees Celsius will be evaluated in this study. Material and MethodsSamples of sunflower and olive oil were purchased from local stores. All chemicals and solvents were provided by Merck and Charlot. Sunflower and olive oil were purified by column chromatography to remove natural antioxidants. Oxidation of purified sunflower oil (1 g per oil) in the presence of a concentration level of gallic acid, methyl gallate and TBHQ (1.2 μmol/g) in glass bottles. The rate of progression of oxidative reactions and the evaluation of oil quality during temperature application is possible by measuring the peroxide number. The carbonyl number is determined using 2-propanol as solvent and 2,4 decodenal as standard and absorbance at 420 nm. The effect of antioxidants (InH) on the oxidation of the test samples can be measured based on the kinetic parameters. These parameters are stability factor F, ORR oxidation rate ratio, activity A and average consumption of WInH antioxidants. Results and DiscussionThe minimum and maximum induction times are related to the control sample and the sample containing the synthetic antioxidant TBHQ, respectively, which, considering the position of the two hydroxyl groups in the para position relative to each other in the TBHQ molecule, make this antioxidant stronger. Justifies. At 80 °C and in sunflower oil, the antioxidant methyl gallate shows a more effective stability factor (F) and antioxidant activity (A), indicating greater antioxidant power than gallic acid. Similarly, F-ORR-A values in methylgalate treatment have a significant effectiveness compared to other treatments. The higher oxidative stability of olive oil against sunflower oils can be attributed to the small amounts of oleic acid and especially the small amounts of linolenic acid in olives. Stability factor (F), is significantly higher for the TBHQ antioxidant than the values obtained for the other two. This factor is affected by the induction period of antioxidants and can be expected due to the effectiveness of antioxidants in increasing the duration of the induction period. The highest value obtained for the ORR oxidation rate parameter, is related to the antioxidant gallic acid. The parameter of antioxidant activity A, in TBHQ is higher than the other two antioxidants. Measurement of carbonyl compounds resulting from the decomposition of hydroperoxides is a good measure of the rate of development of oxidative reactions. In the treatment of gallic acid and TBHQ, the changes in the carbonyl number decrease at the end of the annealing, which is probably due to the decomposition of carbonyl compounds and the production of polymer compounds. Which cannot be measured by carbonyl number test. ConclusionBetter efficacy of gallic acid compared to methyl gallate in olive oil and better efficacy of methyl gallate compared to gallic acid in sunflower oil at 80 °C show the composition of fatty acids, the nature of lipid systems and the position of antioxidants in the reaction medium. Have a great effect on improving the performance of antioxidants. Determination of oxidative stability based on carbonyl number shows similar results to peroxide number .
Food Chemistry
Zeinab Nooshi Manjili; Alireza Sadeghi Mahoonak; Vahid Erfani Moghadam; Mohammad Ghorbani; Hoda Shahiri Tabarestani
Abstract
IntroductionSeeds and nuts have received increasing attention due to their nutritional value and the high therapeutic properties of their bioactive compounds. Most of the seeds are used as nuts, and some of them are considered agricultural waste. Pumpkin seeds have a high content of protein (30–40% ...
Read More
IntroductionSeeds and nuts have received increasing attention due to their nutritional value and the high therapeutic properties of their bioactive compounds. Most of the seeds are used as nuts, and some of them are considered agricultural waste. Pumpkin seeds have a high content of protein (30–40% in terms of dry matter). Proteins are among the vital health-giving components that provide nitrogen, essential amino acids and energy necessary for normal cells. Pumpkin seeds are a good source of amino acids such as valine, histidine, isoleucine, leucine, threonine and methionine. Protein hydrolysate is a mixture of peptides and amino acids that can show antioxidant, antimicrobial, anticancer, antidiabetic and antihypertensive properties. During hydrolysis, proteins are broken into small peptides and amino acids. Since enzymatic hydrolysis is performed in relatively mild conditions and no amino acid damage occurs, this type of hydrolysis is preferred over acid and alkaline hydrolysis. Hydrolysates obtained from pumpkin seed protein have bioactive properties, especially antioxidant activity. Pretreatment of proteins before enzymatic hydrolysis acts to improve the release of bioactive peptides from different proteins. Pretreatment can facilitate the unfolding the structure of proteins and thus increase the access of enzymes to peptide bonds. The main properties of microwaves usually show three characteristics: penetration, reflection and absorption. Microwave assisted enzymatic hydrolysis can shorten the time and improve the speed of the reaction. The purpose of this research was to investigate the antioxidant activity of pumpkin seed protein hydrolysates (Cucurbita maxima L.) by alcalase enzyme in two conditions: without pretreatment and using microwave pretreatment. Material and MethodsIn this study, Pumpkin (Cucurbita maxima L.) was purchased from the local market of Astane Ashrafieh in Gilan province. The seeds were scooped manuallyand then dried in an oven at 50°C for 72 hours. After the production of protein concentrate from pumpkin seeds, the chemical properties of the concentrate, such as the amount of fat, protein, ash and moisture, were measured. The isolated pumpkin seed solution was exposed to microwave energy with a power of 450-900 watts for 30–90 seconds and was used as a substrate solution in enzymatic hydrolysis experiments. It should be noted that after measuring the total antioxidantactivityr for different powers and times of microwave pretreatment, the power of 600 watts for 60 seconds was selected and applied before enzymatic hydrolysis. Enzymatic hydrolysis was done by alcalase enzyme with a concentration of 0.5 to 2.5% compared to the protein substrate during 20 to 190 minutes, and the optimum temperature and pH of alcalase were determined in order to produce hydrolysates with antioxidant activity. Antioxidant activity was measured by using DPPH free radical inhibition, total antioxidant activity and iron chelation activity methods. Result and DiscussionBioactive peptides produced by the enzymatic hydrolysis of proteins have significant antioxidant properties. Pumpkin seeds can be used as a rich source of nutrients and bioactive compounds in various food industries. The results showed that the maximum amount of antioxidant activity without pre-treatment was achieved in 165 minutes with a 2.2% ratio of E/S by using DPPH free radical scavenging activity (40.5%), total antioxidant power (0.79), and iron chelation activity (96.2%) methods. By using microwave pre-treatment, the maximum amount of antioxidant activity was achieved in a shorter time and with less enzyme (105 minutes and E/S ratio 1.5%) using DPPH free radical scavenging (52%), total antioxidant power (0.711), and iron chelation activity (93%). Therefore, it can be concluded that using microwave assisted enzymatic hydrolysis , in addition to achieving hydrolysates with proper antioxidant activity, is a suitable method to save time and reduce enzyme concentrations used in enzymatic hydrolysis.
Food Chemistry
Hassan Rezadoost; Maryam Manzari Tavakoli; Samad Nejad Ebrahimi; Mohammad Reza Vazifeshenas; Mohammad Hossein Mirjalili
Abstract
Over the past decades, the use of natural additives has increased as an alternative to artificial ingredients in the food industry. The purpose of this study was to investigate the potential of pomegranate peel (PP) as a natural food additive. Many factors, including genotype, could affect the quality ...
Read More
Over the past decades, the use of natural additives has increased as an alternative to artificial ingredients in the food industry. The purpose of this study was to investigate the potential of pomegranate peel (PP) as a natural food additive. Many factors, including genotype, could affect the quality of PP as a by-product of juice production with many nutritional, functional and anti-infective properties. In this study, the most significant phytochemical characters of thirty Iranian pomegranate peels (IPP) from different genotypes, including total phenolic (TPC) and flavonoid content (TFC), and nine phenolic compounds were determined. The HPLC-DAD-MS results of PPEs revealed nine phenolic compounds in the IPP extracts. Punicalagin β, punicalagin α, and ellagic acid were the main components constituting 20.8–48.7, 13.9–30.1, and 1.6–13.4 μg/mg DW, respectively. The peel of IPP23 (Kabdar-Shirin-e- Behshahr) contained the highest quantity of polyphenolic compounds. Also, TPC and TFC of the peel extracts ranged between 66.38 and 181.41 mg GAE/ g DW and 38.5 to 144.13 mg RE/ g DW, respectively. Eventually, antioxidant potential estimated by the DPPH assay ranged between 4.1 and 14.4 μg/ml. The results showed that the antioxidant property of pomegranate peel extracts is significantly higher than the standard of gallic acid. Also, the peel of the genotypes that had high phenolic compounds were introduced as superior genotypes. The results of HCA showed that, among the studied genotypes, the peel of IPP23 can be introduced as a potential source of natural preservatives in the food industry.
Food Chemistry
Fatemeh Ghannadiasl; Zahra Jahdoust
Abstract
In recent years, the use of propolis in food products has received attention owing to its functional role. This study was conducted to investigate the effect of different concentrations of propolis extract on the total polyphenol content and antioxidant activity of raw milk. For this purpose, an aqueous ...
Read More
In recent years, the use of propolis in food products has received attention owing to its functional role. This study was conducted to investigate the effect of different concentrations of propolis extract on the total polyphenol content and antioxidant activity of raw milk. For this purpose, an aqueous extract of dry propolis was prepared and stored in dark-colored bottles at 4 °C until the day of experiments. The propolis extract was added to raw milk in concentrations of 0, 4.7, 9.1, 16.6, and 28.5%. Total phenolic content and antioxidant activity were measured using the colorimetric Folin-Ciocalteu method and DPPH assay, respectively. Measurements were performed on the first day at zero hour and after 6 and 24 h of treatment, and the storage temperature was maintained at 5°C until analyzed. The amount of total polyphenol increased with the increase in the concentration of propolis extract in the treated milk in 0 hour; accordingly, the lowest and the highest amounts of total polyphenol were related to control milk and milk containing 28.5% propolis extract, respectively. A decreasing trend was observed in total polyphenol in the control sample and raw milk containing 4.7% propolis extract during 24 hours. There was an increase in total polyphenol content in raw milk containing 9.1% and 16.6% propolis extracts, the trend of changes in raw milk containing 28.5% extract was insignificant. The addition of propolis extract caused an increase in the antioxidant activity and total phenolic content in raw milk. According to the results, it is recommended to carry out more studies to clarify the functions of propolis's total polyphenol content and its interaction with milk proteins.
Food Chemistry
Zeinab Ghasemi Arshad; Abdollah Ehtesham Nia; Eisa Hazbavi; Hassan Mumivand; Morteza Soleimani Aghdam
Abstract
IntroductionThe increase in people's awareness of the negative effects of chemical preservatives has led to more research on the antimicrobial effect of plant essential oils and their potential to be used as preservative compounds. Strawberry (Fragaria ananassa cv. qingxiang) is one of the ...
Read More
IntroductionThe increase in people's awareness of the negative effects of chemical preservatives has led to more research on the antimicrobial effect of plant essential oils and their potential to be used as preservative compounds. Strawberry (Fragaria ananassa cv. qingxiang) is one of the most popular and widely consumed berries due to its taste, sweetness and healthy function. The taste of strawberry is related to its hardness, viscosity, sugars, protein, total soluble solid, titratable acidity content and minerals like P, K, Ca and Fe. It is a good source of polyphenolic compounds such as flavanols and has antioxidant activity. This, together with higher vitamin C content in strawberries, contributes beneficial effects on the maintenance of consumer health. Strawberry has higher antioxidant activities than orange, grape, banana, apple, etc. Strawberries are among the fruits sensitive to mechanical and physiological damage and have a fast metabolism and deterioration during the storage period. For this reason, it is necessary to use safe methods to control spoilage and maintain the quality of strawberry fruit during storage. Materials and Methods The experiment was conducted in a completely randomized design, in a 5 x 4 factorial scheme (5 treatments x 4 periods evaluated), with four replications The first variable was the type of material with different concentrations in five levels including 0, 0.3%, 0.6% carvacrol, the combination of chitosan with 0.3% and 0.6% carvacrol, and the second variable was storage time in four periods including 0, 10, 20, 30 days of storage. The harvested fruits were kept at 4°C and with a relative humidity of 90±5% and parameters such as weight loss, pH, firmness of the fruit tissue, acidity (TA), soluble solids (TSS) and taste index, vitamin C, phenol and flavonoid, fruit shelf life (number of days) during the storage period were investigated and studied. Results and Discussion The ANOVA results showed that the effect of the type of treatment and storage time on all investigated traits except for the firmness of the fruit texture was significant at the probability level of 1%. The fruits treated with the combination of chitosan and carvacrol 0.6% had more texture firmness, vitamin C, total phenol content and the amount of soluble solids and better shelf life than the control. In all four storage times, the highest content of total phenol (2.49 mg of gallic acid per 100 gr FW), total flavonoid (0.435 mg of Quercetin per 100 gr FW) and firmness (3.80 N) was related to the combined treatment of chitosan with carvacrol 0.6% and the lowest amount was related to the control. The firmness of the fruit tissue gradually decreased during storage, but this process was observed at a significantly slower rate in the treated fruits. ConclusionConsidering the increase of 10 and 12 days of shelf life post- harvest of the combined treatment of chitosan + 0.6% carvacrol compared to other treatments and the control, hence the application of chitosan pre harvest and the use of 0.6% carvacrol edible coatings can be recommended as a safe and low-cost strategy to increase the shelf life post harvesting of 'Parus ' strawberry cultivar.
Food Chemistry
Iysan Izanloo; Alireza Sadeghi Mahoonak
Abstract
Introduction Free radicals originate from oxidation reactions decrease food quality and also promote incidence of various diseases such as cancer. In this regard, the use of natural compounds with antioxidant properties, such as bioactive peptides, is of interest to many researchers. Food-derived ...
Read More
Introduction Free radicals originate from oxidation reactions decrease food quality and also promote incidence of various diseases such as cancer. In this regard, the use of natural compounds with antioxidant properties, such as bioactive peptides, is of interest to many researchers. Food-derived bioactive peptides, can play an important role in the oxidative systems. Ultrasound, as a cheap and green technology, is widely used to extract proteins and antioxidant compounds. Ultrasound pretreatment before enzymatic hydrolysis can open the protein structure and increase the intensity of proteolysis by increasing the exposure of peptide bonds prone to enzymatic hydrolysis; which increases the production efficiency of bioactive peptides. Ultrasound treatment changes the three-dimensional structure of proteins. Therefore, a combination of pretreatment with ultrasound and sequential enzymatic hydrolysis can be a promising way to modify the function of proteins. Materials and Methods In this research the effect of hydrolysis time and ultrasonic pretreatment on enzymatic hydrolysis of edible mushroom protein by pancreatic enzyme to produce peptides with high antioxidant capacity was evaluated. First edible mushroom was turned into powder and then, in order to optimize the production of hydrolyzed proteins with maximum antioxidant activity, the hydrolysis was performed 30, 60, 90, 120, 150, 180 and 210 minutes with a ratio of enzyme to substrate of 1% (based on the result of previous research) and at 40°C in four conditions (1- without ultrasound pre-treatment, 2- with ultrasound pre-treatment with 40% power, 3- with ultrasound pre-treatment with 70% power and 4- with ultrasound pre-treatment with 100% power) by ultrasound probe in 5 minutes before adding the enzyme. In the next step, the antioxidant capacity of hydrolyzed proteins was measured at different times by DPPH free radical scavenging activity, iron ion reduction power, iron ion chelation and total antioxidant capacity. Results The results showed that the highest DPPH free radical scavenging activity in untreated and treated samples with 40, 70 and 100% ultrasound power were 69.1, 77.45, 79.07 and 80.27, respectively. In most of the hydrolysis times, DPPH free radical scavenging activity in ultrasound treatment with 100% power was higher than the samples treated with 40 and 70% power. The highest total antioxidant capacity in untreated and treated samples with 40, 70 and 100% ultrasound power were 0.871, 1.025, 1.05 and 1.2 (absorption at 695 nm), respectively. In most of the hydrolysis times, the total antioxidant capacity in the samples treated with ultrasound with 100% power was higher than the samples treated with 40 and 70% power. The results showed that the highest reducing power of Fe3+ in untreated and treated samples with 40, 70 and 100% ultrasound power were 2.03, 2.40, 2.44 and 2.51(absorption at 700 nm), respectively. The highest iron ion chelation power in untreated and treated samples with 40, 70 and 100% ultrasound power were 25.22, 30.40, 26.52 and 41.10%, respectively. By increasing the ultrasound power in most of the hydrolysis times, the chelating power of iron ions in the ultrasound treatment with 100% power was higher than the samples pretreated with 40 and 70% power. The results showed that samples pretreated with 100% power ultrasound have the highest antioxidant properties compared to samples without pretreatment and pretreated with 40% and 70% ultrasound power. Based on the results, using ultrasound treatment with 100% power and during hydrolysis time of 60 minutes, a product with high antioxidant capacity was obtained and selected as a suitable treatment. Conclusion The ultrasonic mechanism is attributed to its thermal effects, cavitation and mechanical efficiency, so that it can increase the mass transfer and increase the contact between the substrate and the enzyme or change the spatial structure of the substrate. The results showed that samples pretreated with ultrasound with 100% power have the highest antioxidant properties compared to samples without pretreatment and pretreated with 40 and 70% power. Therefore, the use of high-power ultrasonic pretreatment shortens the hydrolysis time to achieve peptides with higher antioxidant capacity and thus increases the efficiency of enzymatic hydrolysis.
Food Chemistry
Negar Soleimanpoor Tamam; Akram Arianfar; Vahid Hakimzadeh; Bahareh Emadzadeh
Abstract
Introduction Gelatin is one of the most widely used colloidal proteins, which has unique hydrocolloidal property. Gelatin is derived from collagen by changing the thermal nature. This product is widely used in food, pharmaceutical, biomedical, cosmetic and photography industries. Global gelatin ...
Read More
Introduction Gelatin is one of the most widely used colloidal proteins, which has unique hydrocolloidal property. Gelatin is derived from collagen by changing the thermal nature. This product is widely used in food, pharmaceutical, biomedical, cosmetic and photography industries. Global gelatin demand for food and non-food products is increasing. Two important properties of nanoparticles are: Increasing the surface-to-volume ratio of nanoparticles causes the atoms on the surface to have a much greater effect on their properties than the atoms within the particle volume. The effects of quantum size, which is the second feature. Methods for preparing nanoparticles from natural macromolecules: In general, two major methods for making protein nanoparticles have been reported Emulsion-solvent evaporation method and sedimentation or phase separation method in aqueous medium. Numerous methods have been reported for the preparation of nanoparticles from natural macromolecules. The first method is based on emulsification and the second method is based on phase separation in aqueous medium. In the first method, due to the instability of the emulsion, it is not possible to prepare nanoparticles smaller than 500 nm with a narrow particle size distribution. Therefore, coagulation method or anti-solvent method which is based on phase separation was proposed to prepare nanoparticles from natural macromolecules. Materials and Methods Type B (cow) gelatin was purchased from processing company with Bloom 260-240 food and pharmaceutical Iran solvent gelatin solution of 25% aqueous acetate glutaraldehyde from Iran Neutron Company. Two-stage anti-solvent method was used to produce gelatin nanoparticles. Then, to form nanoparticles, acetone was added dropwise while stirring until the dissolved acetone begins to change color and eventually turns white, which indicates the formation of nanoparticles. Finally, glutaraldehyde solution was added for cross-linking and finally centrifuged. Results and Discussion The results showed that with increasing gelatin concentration, nanoparticle size and PDI increased significantly. According to the announced results, the solvent has a direct effect on the size. Therefore, the best mixing speed is determined to achieve the smallest particle size. Zeta potential is the best indicator for determining the electrical status of the particle surface and a factor for the stability of the potential of the colloidal system because it indicates the amount of charge accumulation in the immobile layer and the intensity of adsorption of opposite ions on the particle surface. If all the particles in the suspension are negatively or positively charged, the particles tend to repel each other and do not tend to accumulate. The tendency of co-particles to repel each other is directly related to the zeta potential. Fabricated gelatin nanoparticles have a stable structure, and are heat resistant. These nanoparticles are ready to be used to accept a variety of aromatic substances, compounds with high antioxidant properties, a variety of vitamins and heat-sensitive substances. ConclusionThe results of this study showed that the optimal conditions for the production of a particle of 88.6 nm at 40 ° C, the volume of acetone consumption was 15 ml, concentration 200 mg and speed 1000 rpm, and the morphology of gelatin nanoparticles have resistant, spherical polymer structure and mesh with a smooth surface that can be clearly seen under an electron microscope.
Food Chemistry
Somaye Kheirati Rounizi; Fateme Akrami Mohajeri; Hamdollah Moshtaghi Broujeni; Sara Jambarsang; Hossaein Kiani; Elham Khalili Sadrabad
Abstract
Background and objective It was shown that contamination of agricultural pasturage with fertilizers, application of sewage and effluents in irrigation, use of pesticides and air pollution have led to the entrance of chemical contaminants, including metals, into plants. On the other hand, food processing ...
Read More
Background and objective It was shown that contamination of agricultural pasturage with fertilizers, application of sewage and effluents in irrigation, use of pesticides and air pollution have led to the entrance of chemical contaminants, including metals, into plants. On the other hand, food processing is (handling, processing, transportation) considered as an important way of food contamination. Vegetable oils are essential in human dietary which is introduced as crucial sources of energy, fat soluble vitamins, and essential fatty acids. Sesamum indicum L., known as sesame seed, has been cultivated in Asian countries from ancient times as vegetable oil for cooking and seasoning ingredients. In recent years, the sesame oil has been considered due to its high antioxidant activities and nutritional properties. Due to the use of sesame seeds extracted oil in two form of ardeh oil and sesame oil, the amounts of mineral elements (phosphorus, potassium, iron, nickel, cobalt, manganese, calcium and magnesium) in sesame seeds and its extracted oils (ardeh oil and refined sesame oil) were investigated. Materials and Methods In order to determine the mineral concentration, refined sesame oil and ardeh oils were prepared from an imported sesame seed. In order to prepare the sesame oil, sesame seeds were put into a cold presser and the oil was extracted under low pressure. The Ardeh oil was prepared by adding water to sesame paste in the ratio of 2.2:10 and oil was separated by centrifugation. The sesame seeds and oil samples (refined sesame oil and ardeh oils) were digested by microwave digestion method in presence of 5 ml 65% nitric acid and 2 ml of hydrogen peroxide (H2O2). The digested samples were then filtered through 0.45 µm filter membrane. Then, the concentrations of phosphorus, potassium, iron, nickel, cobalt, manganese, calcium and magnesium in sesame seeds, ardeh oil and refined sesame oil were examined using Inductively Coupled Plasma - Optical Emission Spectroscopy (ICP – OES). Results In the present study, the limit of detection (LOD) for each studied mineral elements were determined as nickel: 4 mg/kg, magnesium: 0.00066 mg/kg, manganese: 0.000134 mg/kg, phosphorus: 0.384 mg/kg, cobalt: 0.594 μg / kg, iron: 0.000797 mg/kg, potassium: 0.00394 mg/kg, calcium 0.005 mg/kg. According to the results, the highest amounts of mineral elements were detected in sesame seeds. The achieved results showed that the method of sesame oil extraction can reduce the mineral elements in the final sesame oils. The amounts of mineral elements in sesame seeds were estimated as P > Ca > K > Mg > Fe > Mn > Co > Ni. The pattern of mineral elements in Ardeh oil was reported as P > Fe > K > Co > Mg > Ni > Mn > Ca. The reduction pattern was reported as P > K > Fe > Ni > Co > Mn > Ca > Mg in refined sesame oil. As can be seen the order of mineral elements was changed in two oil samples and sesame seed. It was shown that except for K and Ca, all mineral elements in ardeh oil were higher than refined sesame oil. As can be seen, the refining process was effectively reduced the metals in oil samples. On the other hand, high amount of mineral elements in sesame seed in comparison to extracted oils could be attributed to lack of processing methods which are present in oil production in both methods. Conclusion It should be considered that presence of different metals in vegetable oils could facilitate the oil deterioration and oxidization as well as oil shelf life reduction. Since the most of the sesame lots in Iran are imported, it is necessary to monitor the amount of mineral elements.
Food Chemistry
Zeinab Soltan Touyeh; Shiva Dehghan Abkenar; Nazanin Khakipour
Abstract
Introduction Rice as a staple food, especially in Asian countries, can be a major source of heavy metals. Heavy metals also enter the soils where crops grow naturally and / or through human activities. Metals are absorbed and accumulated in the edible parts of the plant and enter the food ...
Read More
Introduction Rice as a staple food, especially in Asian countries, can be a major source of heavy metals. Heavy metals also enter the soils where crops grow naturally and / or through human activities. Metals are absorbed and accumulated in the edible parts of the plant and enter the food chain. Toxic metals, which are present in nature due to industrialization, have polluted the environment, including soil, air, water and food, and have adverse effects on human health through food chains. The Codex Organization has set maximum levels for these elements in various cereals to protect trade and health. Nitrate and nitrite are naturally present in soil, water and food. But today, foods have higher levels of nitrate and nitrite. Excessive use of nitrogen fertilizers to achieve higher yields and improper disposal of human and animal wastes may lead to nitrate accumulation in agricultural products. Very few studies have been performed on the measurement of heavy metal and nitrogen indices in replanted rice. The aim of this study was to measure the amounts of heavy metals (lead, cadmium and arsenic) and the amounts of nitrate and nitrite in first harvest rice and re-harvest rice and compare it with the standard values of the World Health Organization. Methods and Materials In this study, a total of 18 rice samples were prepared from three selected farms in the first and second cultivation times and the amount of nitrite, nitrate and heavy metals lead, cadmium, arsenic and mercury were evaluated. Results and Discussion The results showed that in all farms in the second crop the concentration of lead decreased significantly (P<0.05). The concentration of lead in all treatments of the first crop Has been more than allowed and in the second cultivation, the treatment of field number one and two, is more than allowed (P<0.05). The concentration of cadmium in all treatments is within the allowable range and in the second crop compared to the first crop of fields number one and three has a significant decrease and in field number two has increased significantly (P <0.05). The highest amount of cadmium is related to field treatments number three. The highest amount of arsenic was observed in the first crop of farm number one and it is more than the allowable limit and in other treatments the amount of arsenic was less than the allowable level and in all three farms the concentration of arsenic in the second crop was significantly reduced compared to the first crop. Regarding mercury, in fields number one and two, with the change of cultivation, the amount of mercury increased significantly and in field number three, there was a significant decrease (P <0.05). Mercury concentration is less than the allowable limit only in the second culture sample of farm number three. Nitrite and nitrate concentrations were also low in all treatments and were considered zero. Experiments showed the amount of nitrite and nitrate in all samples to be negligible and undetectable. Due to the fact that the detection limit of the method (LOQ) used to measure nitrate and nitrite is 100 ppb, the amount of nitrate and nitrite in all samples can be less than 100 ppb. The permissible level of nitrate in food products and rice grains is set at 50 mg/kg according to national standard 16596. The results of the samples showed that all 18 samples had lower amounts of nitrate than the allowable limit. Therefore, rice samples prepared from the first and second crops, their nitrate content is less than the allowable limit and have a complete degree of health. Conclusion According to the results obtained, all rice cultivated in the first and second crops have some arsenic, cadmium and lead, but the amount measured in some samples is less and in others, more than specified in the national standard of Iran. their consumption may be dangerous for consumers. These results also indicate that due to the stability of the field and plant type, there is a positive and significant relationship between the amount of heavy metals studied in rice and the time of cultivation, and this requires further studies on heavy metal contamination in the region. Take place. Therefore, with the conducted studies, it can be concluded that there are concerns in the consumption of rice cultivated in the city of Mazandaran province, in terms of the possibility of endangering the health of consumers.
Food Chemistry
Mahbobe Mohammadi; Soheila Aghaei Dargiri; Somayeh Rastegar
Abstract
The use of edible coatings has been considered as an effective solution to improve the shelf life and quality of fruits. In this research, increase in the shelf life of citrus fruits (Citrus aurantifolia cv. Mexican lime) coated with Persian gum and pomegranate seed oil was investigated. Different treatments ...
Read More
The use of edible coatings has been considered as an effective solution to improve the shelf life and quality of fruits. In this research, increase in the shelf life of citrus fruits (Citrus aurantifolia cv. Mexican lime) coated with Persian gum and pomegranate seed oil was investigated. Different treatments of lemon fruit coated with Persian gum and pomegranate seed oil with concentrations (zero (control), 0.5% and 1% gum, combination of 0.5% and 1% gum and pomegranate seed oil, 0.05% and pomegranate seed oil 0.05 percent) were prepared and after 24 days of storage at ambient temperature (20 ± 2 °C and relative humidity of 50-60 percent) were statistically evaluated in the form of a completely random design with three replications. The results of this research showed that the treatments used had an effective role in controlling the weight loss of fruit during storage. Thus, the lowest percentage of weight loss was observed in the pomegranate seed oil treatment. Except pomegranate seed oil treatment, other treatments showed less TSS than the control. In most of the treatments, the content of phenol, flavonoid and antioxidant was at a higher level than the control. The average comparison results showed that the fruits coated with 1% gum (85.36 units/ml) showed significantly more peroxidase activity than the control (60.35 U/ml). Persian gum edible coating 1% and 0.5% as well as Persian gum 1% in combination with pomegranate seed oil significantly controlled the activity of polyphenol oxidase enzyme. The treated samples showed less yellowness (b*) than the control. In general, the best marketability was observed in fruits coated with 1% gum. Therefore, it is recommended to use this coating to preserve the freshness and quality of the Mexican lime fruit during storage in the environment.
Food Chemistry
Negin Jafarian; Afshin Akhondzadeh Basti; Hamideh Emtiazi
Abstract
Background and Objectives Natural preservatives extracted from herbs are important sources for bioactive compounds that can be used in protection of food products. Essential oils are aromatic oily liquids, obtained from plant material like flowers, buds, seeds, leaves, and roots. Unfortunately, ...
Read More
Background and Objectives Natural preservatives extracted from herbs are important sources for bioactive compounds that can be used in protection of food products. Essential oils are aromatic oily liquids, obtained from plant material like flowers, buds, seeds, leaves, and roots. Unfortunately, most natural compounds are biologically instable, poorly soluble in water and they distribute poorly to target sites. Currently, some novel methods have been introduced in order to improve their stability and their bioavailability, among which is the use of liposomal encapsulation. Microencapsulation reduces reactivity with the environment (water, oxygen, light), decreases the evaporation or the transfer rate to the outside environment, promotes handling ability, masks taste and enhances dilution to achieve a uniform distribution in the final product when used in very small amounts. Essential oils, as natural extracted compounds extracted from plants, are unstable compounds with low water solubility and unable to achieve target cells. Essential oils encapsulation by nanoliposomes is a novel method for increasing their biological activity and protecting them from destructive factors. The aim of this study was production and optimization of nanoliposomes containing Z. teniur essential oil and investigating their antibacterial effects against pathogens (Staphylococcus aureus and Escherichia coli). Materials and Methods Lipid film hydration method was used to produce nanoliposomes containing Z. teniur essential oil. Soy phosphatidylcholine and cholesterol were the main wall materials and chloroform was used as the mixing solvent . The particle size of nanoliposomes and their zeta-potential were investigated using laser diffraction method. In order to determine the minimum inhibitory concentration and the minimum bactericidal concentration of Z. teniur essential oil against examined bacteria, serial dilution method was used. Also, antioxidant activity of free and nano-encapsulated essential oil of Z. teniur was determined by DPPH method. Results According to the results, highest encapsulation efficiency achieved by using 80:20 ratio of soy phosphatidylcholine to cholesterol in nanoliposomes’ wall structures. In general, by increasing the ratio of phosphatidylcholine to cholesterol, encapsulation efficiency was improved. Zeta-potential of nanoliposomes was equal to -5.3 mv and mean particle sizes were in the range of 94.7-119.9 nm. Results indicated that essential oil ejection from nanoliposomes has direct relation to the time of storage and after 30 hours, ejection rate will increase considerably. Ejection rate was higher in phosphate buffer pH=7.4 in comparison with phosphate buffer pH=5.4. Minimum inhibitory concentration and minimum bactericidal concentration of free essential oil against Escherichia coli was 100 and 175 (µl/ml) respectively. Although, Minimum inhibitory concentration and minimum bactericidal concentration of nanoliposomes containing Z. teniur essential oil were equal to 75 and 150 (µl/ml) respectively. Also, results shown that , minimum inhibitory concentration and minimum bactericidal concentration of encapsulated Z. teniur essential oil against Staphylococcus aureus were lower in comparison with free form of Z. teniur essential oil. Staphylococcus aureus (as Gram-positive bacteria) was more susceptible than Escherichia coli (as Gram-negative bacteria). Conclusion Encapsulation of Z. teniur essential oil by nanoliposomes led to improve antibacterial effects of essential oil against Staphylococcus aureus and Escherichia coli. Also, investigating of antioxidant activity showed that encapsulated Z. teniur essential oil in nanoliposomes was more effective than free form of Z. teniur essential oil in scavenging of DPPH free radicals. Using nanoliposome encapsulation technology can be an effective way for increasing the efficiency of natural antibacterial compounds and essential oils encapsulated in nanoliposomes are suitable alternatives for synthetic preservatives used in food industry nowadays. The use of liposomes containing Z. teniur essential oil can provide the necessary protection against growth of spoilage and pathogenic microorganisms such as Staphylococcus aureus and Escherichia coli in food products.
Food Chemistry
Maedeh Hosseinkhani Abadchi; Reza Farhoosh
Abstract
Introduction Thermal process is the most prominent option for treating foods. During the heat treatment, food nutrients response simultaneously but adversely under pH, temperature, moisture, and other provided conditions. It might result in an irreversible transformation of composition and structure ...
Read More
Introduction Thermal process is the most prominent option for treating foods. During the heat treatment, food nutrients response simultaneously but adversely under pH, temperature, moisture, and other provided conditions. It might result in an irreversible transformation of composition and structure that influences oxidative stability and sensory properties. The use of antioxidants is one of the most common methods to prevent edible oils oxidation. Safety concerns of synthetic antioxidants including tert-butylhydroquinone (TBHQ) as food additives have led to increasing demands for natural ones. Phenolic compounds such as Gallic Acid (GA) and Methyl Gallate (MG) represent to possess markedly high activity to scavenge free radicals which are among the most powerful natural sources of oxidative inhibitors in foods. Apart from their antioxidant activity, GA and MG also exhibit multiple biological characteristics such as anti-atherogenic, anti-spasmodic, and anti-microbial activities. This study aimed to investigate the oxidative stability of the in-use sunflower (S) and palm (P) oils as affected by the GA, MG, (GA+MG), and TBHQ to clarify their antioxidant behavior.Materials and MethodsAntioxidants Gallic acid, Methyl gallate and TBHQ (Purity>98%) were purchased from Sigma Aldrich, USA. All solvents and chemicals were provided from Merck, Germany and Sigma Aldrich, USA with analytical grade. Antioxidant-free sunflower and palm oil were prepared from Three Goals factory, Neyshabur, and potatoes (Agria variety) from Fariman region, Khorasan Razavi. Results and DiscussionChemical changes, oxidative stability and quality indices of the in-use sunflower oil (S) and palm (P) (65:35 w.t. %) were evaluated during 8-hour heat treatment at 180 °C through GA, MG, GA/MG (25:75, 50:50 and 25:75) and TBHQ. All experiments were carried out in quadruplicate, and data were subjected to analysis of variance (One-way-ANOVA). Mean data were compared based on Duncan's multiple range test at 5% level (p<0.05). Observations of the chemical properties showed that sample S mainly contained Linoleic fatty acid (61.53%) and Oleic acid (25.50%) and for sample P, Oleic acid (41.90%) and the saturated long-chain fatty acid of Palmitic acid (38.9%). Also, the total phenolic content (TPC) and tocopherol (TTC) of sample P were 53.12 and 185)µg.g-1(, respectively, and sample S were 36.01 and 490 )µg.g-1(. The results of oxidation stability test were analyzed based on Carbonyl value (CV), Conjugated diene value (CDV) and acidity (FFA) parameters. According to our findings, all parameters increased significantly at different speeds during the heat treatment (p<0.05). Moreover, the oxidative stability of the in-use oil was significantly promoted by the antioxidants added, meaning that the control treatment and the treatment containing synthetic antioxidant TBHQ had the highest and lowest FFA%, respectively. The CDV of the antioxidant-free treatment was reduced by 68.6% in the presence of GA75+MG25.In addition, the CV change rate of the antioxidant-free sample in the presence of TBHQ was reduced by 70.2%. It was concluded that the natural antioxidants were capable of being competed with TBHQ antioxidants. ConclusionThe results of this study showed that the heat treatment affected the nutritional value, quality indexes and chemical structure of the treatments, decreasing the quality and stability of the oil. As observed, all FFA, CDV and CV parameters increased significantly at different speeds during 8-hour frying process. The analysis also indicated that the oxidative stability of the treatments increased at the presence of antioxidants during the heat treatment at 180 °C. Thus, the control treatment and the treatment containing synthetic antioxidant TBHQ had the highest and lowest acidity, respectively. Also, the CDV of the antioxidant-free treatment decreased by 68.6% in the presence of GA75+ MG25. In addition, the rate of CV changes was declined by 70.2% through the TBHQ. The results indicated the key role of this synthetic antioxidant in preventing the formation of secondary compounds in the advanced stages of oxidation.It is evident that most synthetic antioxidants are volatile and heat sensitive. Furthermore, there are some limitations in applying TBHQ to promote oxidative stability of food products due to its toxic potential. Evidences have also been reported on the mutation caused by the synthetic antioxidant TBHQ in the living organism's body. Compared to synthetic antioxidants, natural polyphenolic antioxidants such as MG and GA which widely distribute in plants mainly have antioxidative properties. Compared to GA and MG, GA+MG antioxidants have a longer induction period and higher oxidative stability. Promoting oxidative stability with such an arrangement of antioxidants is a good option in taking advantage of this class of natural antioxidants. According to the results of this study, it can be inferred that with a slight increase in natural antioxidants levels, we might be able to obtain the oxidative stability level comparable to the behavior of synthetic antioxidant TBHQ. Of course, it is worth noting that the addition of natural antioxidants to food such as edible oils should also be done according to national and international standards.
Food Chemistry
Maryam Rahimipanah; Alireza Sadeghi Mahoonak; Mohammad Ghorbani; Hoda Shahiri Tabarestani; Mohsen Nabimeybodi
Abstract
Introduction High levels of free radicals can damage biomolecules and eventually cause oxidative stress. Bioactive peptides produced during enzymatic hydrolysis keep high health properties, such as antioxidant properties. The production of antioxidant peptides has received much attention as a new ...
Read More
Introduction High levels of free radicals can damage biomolecules and eventually cause oxidative stress. Bioactive peptides produced during enzymatic hydrolysis keep high health properties, such as antioxidant properties. The production of antioxidant peptides has received much attention as a new generation of natural antioxidants. Plants are one of the most abundant sources of biopolymers, especially protein. As long as the protein structure is intact, its amino acid sequence is inactive; however, during proteolysis, fermentation, and gastrointestinal digestion, these amino acids are released as oligopeptides ordinally with less than 20 amino acids and below 10 kDa in molecular weight. These peptides are more digestible and can exhibit specific bioactive properties such antioxidant properties. In this regard, the use of food waste containing protein to produce bioactive peptides and increase their value has received increasing attention. Enzymatic hydrolysis can increase their functional properties by converting proteins into peptides without affecting their nutritional value. Pomegranate seed protein is a by-product of the pomegranate seed oil industry and can be a good source of bioactive peptides with antioxidant properties. According to our knowledge, there isn’t any data about the enzymatic hydrolysis of pomegranate seed protein for antioxidant peptides production. In this study, the optimal conditions for enzymatic hydrolysis of pomegranate seed protein with trypsin using the responses surface method and the effect of hydrolysis on protein structure were investigated.Materials and Methods In this study, the protein was extracted from pomegranate seed, and using trypsin the optimization of enzymatic hydrolysis conditions of protein was determined by Face-Centered Central Composite design, which is one of the responses surface design methods. The effect of independent variables including temperature (30 to 45 °C), time (30 to 180 minutes), and enzyme to substrate ratio (1 to 3 w/w) on DPPH free radical scavenging activity and Fe+3 reducing power as responses, was evaluated. Validation tests were performed for confirmation of the proposed values by software and the degree of hydrolysis of the samples was determined. In the next step, the unhydrolyzed and hydrolyzed protein was evaluated for molecular weight distribution and their surface hydrophobicity was compared. Finally, scanning electron microscopy images were used to confirm the hydrolysis process.Results and Discussion Under optimal conditions obtained from the response surface method (temperature: 37.6 °C, time: 136.55 minutes, and enzyme to substrate ratio: 2.2%), trypsin-derived hydrolyzate, showed DPPH free radical scavenging power: 87±0.89% and Fe+3 reduction power: 0.293±0.44. Under these conditions, the degree of hydrolysis was equal to 30.1±1%. The optimum conditions of hydrolysis were validated by RSM. The increase in the surface hydrophobicity of the protein after the hydrolysis process indicated the unfolding of the pomegranate seed protein chain and the exposure of its structure during the reaction. The electrophoretic profile of denatured pomegranate seed protein showed smaller peptide bands and lower band intensity, along with losing some of the peptide fractions after hydrolysis. so the efficacy of trypsin at cleaving the protein was confirmed. Evaluation of images obtained by scanning electron microscopy showed that unhydrolyzed protein had complex structures comprised of random sheets of different sizes and shapes and the protein degraded into small fragments and looser structure with many folds after enzyme hydrolysis, resulting in smaller particles compared with untreated samples with the same SEM parametersConclusionConsidering the consumer’s tendency toward functional foods and present concerns about the application of synthetic additives and according to the results, the hydrolyzed pomegranate seed protein prepared by trypsin shows good antioxidant capacity. In addition, there will be a reduction in waste generated by the pomegranate processing industry. Further studies will need for the isolation and identification of the specific peptides and amino acid sequences and the evaluation of their possible incorporation in food matrices.
Food Chemistry
Saeid Azizkhani; Leila Nateghi
Abstract
[1]Introduction: Nowadays, production and consumption of functional and dietary foods have increased. Today, the medicinal, antibacterial and antioxidant properties of fungi have been proven. Ganoderma lucidum is one of the fungi that has been known as the best medicinal fungus due to its various ...
Read More
[1]Introduction: Nowadays, production and consumption of functional and dietary foods have increased. Today, the medicinal, antibacterial and antioxidant properties of fungi have been proven. Ganoderma lucidum is one of the fungi that has been known as the best medicinal fungus due to its various health benefits. Ganoderma lucidum is an annual medicinal fungus which belongs to the Ganodermataceae family. G. lucidum also known as Reishi in Japan, Ling-zhi in China, Ling chih, and Ling chi mushroom in other countries. It is popular among consumers in Japan and is widely used by Asian physicians and herbalists. This medicinal mushroom has been used in Asia for thousands of years to increase energy, stimulate the immune system, and promote health and longevity. In the US, G. lucidum is included in the American Herbal Pharmacopoeia and usually recommended for its immune-supporting effects. In Poland and other countries outside Asia, G. lucidum is used as a daily food supplement that adapts itself to correct imbalances in the body. Influenced by an increasing number of studies on G. lucidum, modern application of G. lucidum include but not limited to treatment of coronary heart disease, arteriosclerosis, hepatitis, arthritis, nephritis, bronchitis, hypertension, cancer and gastric ulcers. The major chemical constituents of G. lucidum are polysaccharides, triterpenes, sterols, lectins and some proteins having beneficial properties for the prevention and treatment of a variety of ailments. Both triterpenes and polysaccharides contain anticancer properties thus making them important nominees for the researches. Spores, fruiting body and mycelium have been investigated for biological active compounds. Ganoderma lucidum is a kind of mushroom known to have various therapeutic properties such as lowering high blood sugar and high blood pressure, boosting the immune system as well as its antibacterial and antioxidant effects.In recent years, a number of researches were performed for the identification of biological compounds and medicinal properties of Ganoderma lucidum. Materials and Methods: In this study, baguette bread with 0.5, 1, 1.5, 2 and 2.5 % Ganoderma lucidum powder was used in baguette bread formulation. The aim of this study was to investigate the possibility of enriching baguette bread using Ganoderma lucidum and to investigate the physicochemical, rheological, texture analysing, microbial, stale and sensory evaluation properties. Therefore, 5 treatments were designed with a control treatment and tests were performed on the treatments in three replications. In order to analyze the data, one-way ANOVA analysis of variance and Duncan at 95% confidence level were used in Minitab 16 software. Results and Discussion: Examination of the rheological properties of the dough showed that different percentages of Ganoderma lucidum significantly affect the rheological characteristics of the dough (p≤0.05) and addition of Ganoderma lucidum reduced the above indices. According to the results, addition of Ganoderma lucidum caused a significant increase (p≤0.05) of phenolic compounds and fiber in bread samples. The results of microbial evaluation showed that with increasing Ganoderma lucidum level in baguette bread, the number of coliforms and molds in the treatments decreased significantly (p≤0.05). The results of sensory evaluation showed that the increase of Ganoderma lucidum level in baguette samples caused a slight decrease in taste, color, odor and general acceptance compared to the control sample.Fungi are rich in protein, pigment, carbohydrates, fatty acids, vitamins and minerals that can be used in food enrichment. Due to the growing human tendency to use natural substances, fungi can be a suitable source to meet this need. According to the results, up to 2.5 % of Ganordama lucidum can be added to baguette bread formula and higher fiber content, more phenolic compounds, more freshness, less microbial load in baguette bread were obtained without having an adverse effect on its sensory properties. Therefore, the treatment mentioned in this study was selected as the best treatment in terms of safety, health and quality properties.
Food Chemistry
Marjan Zargar; Bahareh Shabanpour; Parastoo Pourashouri; Ebrahim Zabihi Neyshbouri
Abstract
[1]Introduction: Collagen is the most abundant and important structural protein in the connective tissue of animals, the production of which is of great importance in the fields of medicine, cosmetics and food. Due to religious restrictions as well as common diseases between livestock and humans, today ...
Read More
[1]Introduction: Collagen is the most abundant and important structural protein in the connective tissue of animals, the production of which is of great importance in the fields of medicine, cosmetics and food. Due to religious restrictions as well as common diseases between livestock and humans, today collagen extraction has turned to other sources, especially aquatic sources. Therefore, the aim of this study was to extract collagen by conventional acidic and enzymatic methods from common carp scales and determine its characteristics in order to make optimal use of this waste to produce valuable products and find alternatives to collagen obtained from land animals. Material and Method: Acid-soluble collagen (ASC) and pepsin-soluble collagen (PSC) were extracted from common carp scales (Cyprinus carpio) and their properties were determined. Common carp scales were prepared with the use of 0.5 M acetic acid and pepsin enzyme. Finally, the extracted collagens were lyophilized and after calculating the extraction efficiencies, their characteristics were determined by electrophoresis tests, UV spectroscopy, X-ray diffraction and isoelectric point determination. Results and Discussion: The results showed that the extraction efficiencies of ASC and PSC were 1.9% and 2.96% (based on dry weight), respectively, which means digestion with pepsin could increase collagen efficiency up to 1.54 times. The results of SDS-PAGE analysis showed that both ASC and PSC are type I collagen and are composed of α1, α2 and β in the (α1) 2α2 chain structure; the isoelectric point of collagens was in the pH range of 5-6. The maximum absorption peak of the UV spectrum of collagen was observed at 235 nm. Although pepsin enzyme (1% dry weight of scales) increases efficiency without significant changes in collagen native structure, but its use for mass production of type I collagen in Iran is not recommended unless self-sufficiency and reduction of pepsin price achieved, while collagen extraction by acidic method is very simple and research to design a production line for this method is recommended. Common carp scales have the potential to be used as an alternative source of collagen in the food and health-pharmaceutical industries. These results can provide a solution to control the waste of the aquatic processing industry in creating environmental pollution, as well as producing a high value-added product from common carp scales.
Food Chemistry
Hamed Saberian; Vahid Pasban
Abstract
[1]Introduction: Anthocyanins are one of the most important of food colorants, which are found in many fruits, flowers, and vegetables, and have been used as natural pigments in commercial foods and beverage products due to their desirable colors and potential nutritional benefits. Saffron (Crocus sativus) ...
Read More
[1]Introduction: Anthocyanins are one of the most important of food colorants, which are found in many fruits, flowers, and vegetables, and have been used as natural pigments in commercial foods and beverage products due to their desirable colors and potential nutritional benefits. Saffron (Crocus sativus) is the most expensive spice of the world and an average 86.4% of wet weight or 96.4% of dry weight of saffron flowers is related to petals. Saffron petals usually do not have a commercial value but contain large amounts of anthocyanins, flavonoids and glycosides. Thus, these petals can be a good source of natural dyes applicable in pharmaceuticals, confectionery, and soft drinks. However, anthocyanins are readily unstable compounds with exposure to oxygen, pH, temperature, enzyme, light, as well as surrounding components, which reduces food color and quality. Losses of anthocyanins occur during juice processing and storage, and methods are needed to prevent these losses. Up to now, various methods including the encapsulation and the co-pigmentation have been tried to intensify the stability of anthocyanins. The co-pigmentation based on the molecular interactions, has been shown to be an efficient way to stabilize anthocyanins. The addition of organic acids, flavonoids, alkaloids, polysaccharides, proteins, etc. as a co-pigment, can improve the stability, and change the bioactivity of anthocyanins. Encapsulation of anthocyanins by alpha and beta cyclodextrins is a potential treatment that could d anthocyanin losses. Anthocyanins can form inclusion complexes with cyclodextrin molecules, which may protect anthocyanins from hydration and polymerization reactions. Therefore, saffron petal is a potential resource of anthocyanin in Iran. Low thermal stability of the anthocyanins caused a tendency to the synthetic colorants. Therefore, the main goal of this research was to investigate the effect of cyclodextrins and co-pigmentation on the anthocyanin extract of saffron petal during heat treatment. Materials and Methods: Anthocyanin extract of saffron petal was extracted by 50% acidic ethanol solution at ambient temperature. Acidified extract was concentrated by a rotary evaporator at 40˚C up to 9 percent concentration of solid materials. Different concentrations of alpha and beta cyclodextrin (10, 25, 50, 75 and 100 mole alpha or beta cyclodextrin to one mole anthocyanin) and also, different co-pigments such as gallic acid (at two molar ratio of 50:1 and 100:1of galic acid/anthocyanin), ferulic acid (at two molar ratio of 50:1 and 100:1of ferulic acid/anthocyanin), quercetin (at two molar ratio of 2.5:1 and 5:1 of quercetin/anthocyanin) and rutin (at two molar ratio of 10:1 and 25:1 of rutin/anthocyanin) were used to study the thermal stability of anthocyanin. Furthermore, the hydroalcoholic extract of rosehip was prepared and concentrated thereby, the rosehip extract (at two molar ratio of 50:1 and 100:1gallic acid equivalent/anthocyanin) was used as a co-pigment. Total anthocyanin content was measured using differential pH method and reported based on mg of cyanidin 3-glucoside per 100 ml the model drink. a* value was measured by Hunter Lab. Model drink (20 mM acid citric buffer in pH of 3) containing 0.01 % CaCl2 and anthocyanin extract was prepared. Prepared model drinks were heated at 90 °C during 0, 15, 30, 45, 60, 90 and 120 min and then, were cooled up to room temperature. Half time of anthocyanin was calculated and the mentioned treatments were investigated to evaluate the stability of the different compounds. Results and Discussion: The results indicated that alpha cyclodextrin at molar ratio of 50:1 (alpha cyclodextrin to anthocyanin) hadn’t any significant effect on the anthocyanin stability but beta cyclodextrin at molar ratio of 50:1 increased the colorant stability, which can be due to the smaller cavity of alpha cyclodextrin rather than beta cyclodextrin that lead to the lower interaction between alpha cyclodextrin and anthocyanin. Although, phenolic co-pigments hadn’t any significant effect on the anthocyanin stability of the model drink but the rosehip extract at two molar ratios of 50:1 and 100: 1 increased the anthocyanin retention. Total phenolic content of rosehip extract was 14.56 g gallic acid equivalent per liter of the extract and total flavonoid content was 365 mg quercetin equivalent per liter of the extract. According to the studies and our results about total phenol and flavonoid content, the increased retention of the anthocyanin can be related to the variety of the phenolic and flavonoid compounds of the rosehip extract. Therefore, beta cyclodextrin as a trapping agent and rosehip extract as a co-pigment, can increase the anthocyanin stability of the saffron petal during heat treatment.
Food Chemistry
Reza Safari; Seyed Vali Hosseini; Sharareh Firouzkandian; Soheyl Reyhani Poul; Mona Zamani
Abstract
[1]Introduction: One way to turn chicken waste into high value-added product is to produce fermented silage (biosilage). This product is superior to fish powder due to its characteristics such as high quality protein, probiotic bacteria and low price and can be considered as a suitable alternative for ...
Read More
[1]Introduction: One way to turn chicken waste into high value-added product is to produce fermented silage (biosilage). This product is superior to fish powder due to its characteristics such as high quality protein, probiotic bacteria and low price and can be considered as a suitable alternative for feed industry. Silage can be produced from protein wastes by both acidic and biological methods. The acidic method of producing silage (acidic silage) uses a variety of organic and inorganic acids such as formic acid and sulfuric acid. In the production of biological silage, two methods of autolysis (using internal enzymes) and fermentation (using microbial starters) are used. Starters used for inoculation are mainly from the group of lactic acid bacteria. To produce silage, protein wastes are used, especially fish wastes. Since poultry waste has not been used for biosilage production in the country so far, the aim of the present study is to produce biological silage from chicken waste and evaluate the profile of amino acids and fatty acids in the biosilage. Materials and methods: Chicken intestine was prepared from meat production complex in Golestan province, Kordkoy city and also Simin Naz poultry industrial slaughterhouse in Sari and was transferred to the processing pilot of Caspian Sea Ecology Research Institute in the shortest time in cold container. During the biosilage production process, protein-degrading bacteria (containing protease enzymes such as gram-positive sporulated bacteria) and acid-producing bacteria (to reduce the pH of the suspension and accelerate the fermentation process, such as lactic acid bacteria) were used as initiator bacteria or microbial starters for intestinal digestion. The product was analyzed for protein, fat, moisture and ash according to standard methods. In this study, high performance liquid chromatography (HPLC) of Cecil model (Seri 200) was used for amino acids analysis. Samples were prepared for assaying amino acids profile in two stages including hydrolysis and derivatization and the results were expressed in grams per 100 grams of substrate. To determine the fatty acids composition of the biosilage sample, the fat was first extracted. In order to evaluate the profile of fatty acids, a Shimadzu model gas chromatography device was used and the results were expressed as a percentage. Results and discussion: The product produced contained about 60% protein and 21% fat. According to the results, the total of essential amino acids in the produced biosilage was 24.416, the total of non-essential amino acids was 30.959 and the total of essential and non-essential amino acids was 55.375 g per 100 g of substrate. Among essentialamino acids, the highest amount belonged to the amino acids leucine (7.334±0.45 g/100g) and valine (4.71±0.27 g/100g) and among non-essential amino acids, the highest amount belonged to glutamic acid (10.6±0.73 g/100g) and alanine (5.864±0.81 g/100g). It was also found that all essential amino acids except tryptophan are present in biosilage. Evaluation of biosilage fatty acids profile revealed that the total amount of saturated fatty acids (SFA) was 33.57%, monounsaturated fatty acids (MUFA) was 41.17% and polyunsaturated fatty acids (PUFA) was 24.36%. It was further found that in biosilage the total omega 3 was 2.07%, the total omega 6 was 22.91% and the sum of EPA and DHA was 2.06%.The profile of amino acids and fatty acids in the biosilage produced from chicken waste is almost the same as that of other products made from protein waste (such as fish meal, fish waste biosilage and hydrolyzed protein powder). This property, along with cheap production and high nutritional value, allows the use of biosilage obtained from chicken waste in the livestock, poultry and aquatics feed industry.