با همکاری انجمن علوم و صنایع غذایی ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 موسسه علوم و صنایع غذایی مشهد

2 فردوسی مشهد

3 دانشگاه فردوسی

4 مهندسی علوم و صنایع غذایی

چکیده

از مهمترین پتانسیل های غشاهای نانوفیلتراسیون حذف یون ها از آب ها و پساب ها با اهداف مختلف است. از جمله این اهداف می توان به سختی زدائی از آب آشامیدنی، حذف یون های فلزات سنگین و تصفیه فاضلاب ها برای استفاده مجدد از آنها اشاره نمود. در این تحقیق از غشاء نانو فیلتراسیون برای حذف مهمترین یون های موجود در آب پرس تفاله چغندر قند (Na+, K+, Ca2+, Mg2+, SO42-, Cl-) با هدف استفاده مجدد از آن استفاده شده است. اثر پارامترهای عملیاتی (دما و فشار) و غلظت بر پارامترهای کارایی فرآیند فیلتراسیون غشایی (شار تراوه، گرفتگی و در صد دفع اجزاء) مورد بحث و بررسی قرار گرفته است. نتایج نشان داد که با افزایش دما شار تراوه، گرفتگی افزایش و درصد دفع یون ها کاهش می یابد و با افزایش اختلاف فشار، شار تراوه ، گرفتگی و درصد دفع یون ها افزایش می یابد. هم چنین نتایج حاکی از آن است که افزایش بریکس، افزایش گرفتگی و کاهش شار و درصد دفع را به همراه خواهد داشت.

کلیدواژه‌ها

عنوان مقاله [English]

Potential of Nanofiltration in Ions Removal from Sugar Beet Press Water

نویسندگان [English]

  • Mostafa Shahidi Noghabi 1
  • Seyed Mohammad Ali Razavi 2
  • Seyed Mahmoud Mousavi 3
  • Mohammad Elahi 4

1 Research Institute of Food Science and Technology

2 Ferdowsi University of Mashhad

3 -

4 Food Science and Technology Engineering

چکیده [English]

Removing of ions from different water and waste water is one of the most important of nanofiltration potential for different aims, such as softening of potable water, remove of heavy metal ions and purification of waste water to reuse. In this study nanofiltration was used to remove of the most important ions (Na+, K+, Ca2+, Mg2+, SO42-, Cl-) in sugar beet press water to reuse of this stream. Effect of operating parameter (temperature and pressure) and concentration on performance parameter of membrane filtration (flux, fouling and rejection of compounds) was investigated. The results shown that increasing of temperature result in increasing of flux and fouling and decreasing of ions rejections and increasing of Trans membrane pressure result in increasing of flux, fouling and ions rejections. Also, the results shown that increasing of brix result in increasing of fouling and decreasing of flux and ions rejections

کلیدواژه‌ها [English]

  • Sugar beet press water
  • Nanofiltration
  • Flux
  • Fouling
  • Ions rejection
شهیدی نوقابی، م. 1385. به کارگیری اولترافیلتراسیون در کاهش رنگ و بهبود کیفیت شربت رقیق حاصل از چغندر قند، پایان نامه کارشناسی ارشد، دانشکده کشاورزی، دانشگاه فردوسی مشهد
Afonso, M., and Yafiez R., 2001, Nanofiltration of wastewater from the fishmeal industry, Desalination, 139: 429.
AOAC, "Official Methods of Analysis of AOAC INTERNATIONAL(2005) 18th ed, Vol 1. AOAC INTERNATIONAL, Gaithersburg, MD, USA, Official Methods.
Bergrnan, R. A., 1995, Membrane softening versus lime softening in Flodda--a cost comparison update. Desalination, 102: 11-24.
Bargeman, G., Vollenbroek, J. M., Straatsma, J., Schroën, C. G. P. H., Boom, R. M., 2005, Nanofiltration of multi-component feeds. Interactions between neutraland charged components and their effect on retention Journal of Membrane Science 247: 11–20
Bogliolo, M., Bottino, A., Capanneli, G., De Petro, M., Servida, A., 1996, Clean water recycle in sugar extraction process: Performance analysis of revers osmosis in treatment of sugar beet press water. Desalination 108: 261-271.
Conlon, W. J., and McClellan, S. A., 1989, Membrane softening: treatment process comes of age, J. AWWA, 81(11): 47–51.
Decloux, M., Tatoud, L., and Mersad, A., 2000 Removal of colorants an polysaccharides from raw cane sugar remelts by ultrafiltration. Zuckerindustrie, 125:106-112.
Dutre, B., and Tragardh, G., 1994, Macrosolute–microsolute separation by ultrafiltration: a review of diafiltration processes and applications, Desalination 95: 227–267.
Eriksson, P., 1988, Nanofiltration extends the range of membrane filtration. Environ. Prog., 7(1): 58–62.
Fersi, C., and Dhahbi, M., 2008, Treatment of textile plant effluent by ultrafiltration and/or nanofiltration for water reuse .Desalination 222, 263–271.
Gonzaleza, M. I., Alvarez, S., Rieraa, F. A., and Álvareza, R., 2008, Lactic acid recovery from whey ultrafiltrate fermentation broths and artificial solutions by nanofiltration. Desalination 228, 84–96.
Guilbaud, J., Masse, A., Andrès, Y., Combe, F., Laundry, P. J., 2010, Water recycling ginship by direct nanofiltration with tubular membranes. Resources,Conservation and Recycling. xxx: xxx–xxx
Hagmeyer, G., and Gimbel, R., 1998, Modeling the salt rejection of nanofiltration membranes for ternary ion mixtures and for single salts at different pH values, Desalination 117: 247–256.
Her, N., Amy, G., and Jarusutthirak, C., 2000, Seasonal variations of nanofiltration (NF) foulants: Identification and control. Desalination 132(1–3): 143–160.
Huang, R. Y. M., 1991, Pervaporation membrane separation processes, Elsevier, Amsterdam.
ICUMSA., 2000, International Commission for Uniform Methodes of Sugar Analysis. Methods Book.
Kaya, Y., Barlas, H., Arayici, S., 2009, Nanofiltration of Cleaning-in-Place (CIP) wastewater in a detergent plant: Effects of pH, temperature and transmembrane pressure on flux behavior. Separation and Purification Technology. 65: 117–129.
Lee, S., and Lee, C. H., 2000, Effect of operating conditions on CaSO4 scale formation mechanism in nanofiltration for water softening. Water Res. 34(15): 3854–3866.
Mohammad, A. W., Kadir Basha, R., Leo, C. P., 2010, Nanofiltration of glucose solution containing salts: Effects of membrane characteristics, organic component and salts on retention. Journal of Food Engineering, 97: 510–518.
Mulder, M., 1991 Basic principles of membrane technology, Kluwer Academic Publishers, Dordrecht.
Palmeri, J., Blanc, P., Larbot, A., and David, P., 1999, Theory of pressure-driven transport of neutral solutes and ions in porous ceramic nanofiltration membranes, J. Membr. Sci. 160: 141–170.
Rautenbach, R., and Gröschl, A., 1990, Separation potential of nanofiltration membranes, Desalination 77: 73-84.
Schaep, J., Van der Bruggen, B., Vandecasteele, C., and Wilms, D., 1998a, Influence of ion size and charge in nanofiltration, Separation Purification Technol. 14: 155–162.
Schaep, J., Van der Bruggen, B., Uytterhoeven, S., Croux, R., Vandecasteele, C., Wilms, D., Van Houtte, E., and Vanlerberghe, F., 1998b, Removal of hardness from groundwater by nanofiltration, Desalination, 119: 295-302.
Schäfer, A. I., Fane, A. G., and Waite, T., 2000, Fouling effects on rejection in the membrane filtration of natural waters, Desalination, 131: 215.
Seidel, A., Waypa, J., and Elimelech, M., 2002, Role of charge (Donna) exclusion in removal of arsenic from water by a negatively charged porous nanofiltration membrane, Environ. Eng. Sci. 18 (2): 105.
Sombekke, H. D. M., Voorhoeve, D. K., and Hiemstra, P., 1997, Environmental impact assessment of groundwater treatment with nanofiltration, Desalination, 113: 293-296.
Tay, J. H., Liu, J., and Sun, D. D., 2002, Effect of solution physic–chemistry on the charge property of nanofiltration membranes. Water Research. 36: 585–598.
Timmer, J. M. K., 2001, Properties of nanofiltration membranes ; model development and industrial application. Timmer. - Eindhoven : Technische Universiteit Eindhoven.
Timmer, J. M. K., Keurentjes, J. T. F., 1999, Mogelijkheden van energiebesparing in de industrie door toepassing van membraanfiltratie, nanofiltratie in het bijzonder, report MINT-project 3385.02/04.83 Ontwikkeling van engineering-tools die de implementatie en optimalisatie van nanofiltratieprocessen in de industrie op eenvoudige wijze ondersteunen, NOVEM, Utrecht.
Van der Bruggen, B., Schaep, J., Wilms, D., and Vandecasteele, C., 1999, Influence of molecular size, polarity and charge on retention of organic molecules by nanofiltration, J. Membr. Sci. 156: 29–41.
Van der Bruggen, B., and Vandecasteele, C., 2002, Distillation vs. membrane filtration: overview of process evolutions in seawater desalination, Desalination, 143: 207-218.
Van der Bruggen, B., and Vandecasteele, C., 2003, Removal of pollutant from surface water and ground water by nanofiltration: overview of possible application in the drinking water industry, Environ. Pollution, 435–445.
Van der Bruggen, B., Hawrijk, I., Cornelissen, E., and Vandecasteele, V., 2003, Direct nanofiltration of surface water using capillary membranes: comparison with flat sheet membranes, Separ. Purif. Technol., 31: 193–201.
Visvanathan, C., Marsono, B., and Basu, B., 1998, Removal of THMP by nanofiltration: effects of interference parameters, Water Res., 32(12): 3527-3538.
Vrouwenvelder, H. S., Van Paassen, J. A. M., Folmer, H. C., Hofman, J. A. M. H., Nederlof, M. M., and Van der Kooij, D., 1998, Biofouling of membranes for drinking water production. Desalination 118(1–3): 157–166.
Wang, X. L., Wang, W. N., and Wang, D. X., 2002a, Experimental investigation on separation performance of nanofiltration membranes for inorganic electrolyte solutions. Desalination, 145: 115–122.
Wang, X. L., Zhang, C., and Ouyang, P., 2002b, The possibility of separating saccharides from a NaCl solution by using nanofiltration in diafiltration mode.Journal of Membrane Science 204: 271–281.
Wang, Z., Liu, G., Fan, Z., Yang, X., Wang, J., and Wang, S., 2007, Experimental study on treatment of electroplating wastewater by nanofiltration, J. Membr. Sci. 305: 185–195.
Warczok J., Ferrando, M., Lopez, F., and Gü ell C., 2004, Concentration of apple and pear juices by nanofiltration at low pressures. Journal of Food Engineering. 63: 63–70.
Waypa, J., Elimelech, M., and Hering, J., 1997, Arsenic removal by RO and NF membranes, J. AWWA, 89(10): 102-114.
Wiesner, M. R., and Chellam, S., 1999, The promise of membrane technologies. Environ. Sci. Technol. 33(17): 360A–366A.
Wu, M., Sun, D. D., and Tay, J. H., 2004, Effect of operating variables on rejection of indium using nanofiltration membranes. Journal of Membrane Science 240, 105–111.
Xu, Y., and Lebrun, R. E., 1999, Investigation of the solute separation by charged nanofiltration membrane: effect of pH, ionic strength and solute type, J. Membr. Sci. 158: 93–104.
CAPTCHA Image