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Abstract  
Adaptive neuro-fuzzy inference system (ANFIS) and genetic algorithm-artificial neural network (GA-ANN) 

were used for modeling of the hot-air drying kinetics of papaw slices. The ANFIS and GA-ANN were fed with 3 
inputs of drying time (0-320 min), drying temperature (40, 50 and 60 °C) and slice thickness (3, 5 and 7 mm) for 
prediction of moisture ratio (MR). The triangular membership functions (MFs) were applied and 27 rules were 
provided for the ANFIS designing. The developed ANFIS predictions were relatively similar to the experimental 
data (R2 = 0.9967 and RMSE = 0.0161). The optimized GA-ANN, which included 7 hidden neurons, predicted 
the MR with a good precision (R2 = 0.9936 and RMSE = 0.0220).  The effective diffusivity for papaw slices was 
within the range of 6.93 ×10-10 to 1.50×10-9 m2/s over the temperature range. The activation energy was found to 
be 32.5 kJ/mol indicating the effect of temperature on diffusivity. 
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1Introduction 

Papaw (Carica papaw L.), known as an 
important fruit crop is grown widely in 
tropical and subtropical regions. This fruit is 
nutrient and rich in vitamins A and C, and has 
good organoleptic characteristics as well 
(Fernandes et al., 2006). According to the 
report of FAO, papaw has been ranked third 
with 11.2 million tons or 15.36 percent of the 
total tropical fruit production in 2010. 

 Water, as one of the major food 
components, has a decisive directly influence 
on the quality and durability of food materials 
via its impact on many physico-chemical and 
biological changes (Lenart, 1996). Drying due 
to the water removal or making water hard to 
access for microbe development is one of 
effective operations to reduce the spoilage of 
agricultural products (Izadifar and Mowla, 
2003). 

 In characterizing the drying parameters, the 
thin-layer drying procedure was found to be 
the most feasible tool (Aghdam et al., 2015; 
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Yousefi et al., 2013a). Several models have 
been used by several authors to estimate the 
moisture content/drying rate of materials 
which eventually led to different expression 
for the prediction of moisture content/drying 
rate (Yousefi et al., 2013a; Yousefi et al., 
2013b). Most of these models are 
mathematical models which classified to 
theoretical, semi-theoretical and empirical 
ones (Demirtas et al., 1998; Midilli et al., 
2002). Nowadays, researchers have asserted 
on the potential of artificial neural networks 
(ANNs) and adaptive neuro-fuzzy inference 
system (ANFIS). These techniques can be 
used as good substitutions for conventional 
modeling ones such as multiple regression 
analysis and response surface methodology. 
Artificial intelligent method has been 
developed and is extensively used for 
simulation of drying of agricultural and food 
materials (Tripathy and Kumar, 2009). 
Erenturk et al. (2004) studied the thin-layer 
drying of Echinacea Angustifolia root. 
According to their report, the comparison 
between the obtained R2 and RMSE values for 
neural network and regression models revealed 
that neural network was better than the all 
mathematical models for predicting the 
moisture content of the samples. Bala et al. 
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(2005) modelled drying kinetic of jackfruit in 
a solar dryer using neural network model. It 
was reported that a suitable trained model 
could predict the drying process of jackfruit. 
Comparison of two modeling methods of 
mathematical and ANNs to estimate moisture 
content of papaya fruit slices during hot air 
drying has been studied (Yousefi et al., 
2013a). The results showed that estimation of 
moisture content of papaya fruit could be 
better modeled by a neural network (R2 = 
0.9994 and RMSE = 0.0070) than by the 
mathematical models (R2 = 0.9974 and RMSE 
= 0.0123). Prakash and Kumar (2014) 
generated an ANFIS model to predict the 
jaggery temperature, the greenhouse air 
temperature and the moisture evaporation for 
drying of jaggery inside the greenhouse for 
natural convection mode. Their results 
demonstrated that the analytical and 
experimental results for jaggery drying are in 
good agreement (R2 = 0.999-1.00). Tao et al. 
(2016) utilize an ANFIS model to estimate the 
physicochemical and microbiological 
parameters of partially dried cherry tomatoes 
during storage. For all the ANFIS models 
used, the R2 values were higher than 0.86 and 
showed better performance for prediction. 

Based on the literature review, no research 
study has been done on modeling of hot-air 
drying of papaw using ANFIS and genetic 
algorithm-artificial neural network (GA-
ANN). Therefore, the purpose of this work 
was to investigate the thin-layer drying process 
of papaw slices during hot-air drying and 
modeling of the experimental data using 
ANFIS and GA-ANN to estimate the moisture 
content of papaw fruit.  

 
Material and methods 
Experimental Study 

 Papaw fruits were purchased from a local 
market in the Bahookalat region (Sistan & 
Baluchestan province, Iran) and stored in a 
refrigerator at 4 ± 1 °C before they were 
subjected to the drying process. The fruits 
were washed, peeled and cut into 3, 5 and 7 
mm thick slices. A cabinet dryer (Model JE10 
TECH, F-02G, South Korea) with controllable 

airflow, temperature and air humidity 
monitoring systems was used for the hot air 
drying process. The absolute humidity and the 
hot-air flow ratio for all drying temperatures 
were 0.6 ± 0.02 g kg-1 dry air and 1± 0.1 ms-1, 
respectively. The initial moisture content was 
measured using a laboratory oven dryer 
(Galenkamp, UK) operated at 105 °C. Initial 
moisture content of the slices was 84.48% ± 
0.05% (w. b.). The weight of the samples was 
recorded by programmable balance software at 
5-min intervals until the moisture of the 
samples reached 5 ± 0.02% (w. b.) in the final 
product. Drying was carried out at three 
temperature levels (40, 50 and 60 °C). 
Moisture ratio (MR) variations with time were 
plotted for various conditions. MR is defined 
by the equation (1):    

0

(1)e
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M MMR
M M





     

Where M is the moisture content of the 
samples at any drying time and M0 is the 
initial moisture content. The moisture ratio 
equation was simplified to M/M0 as value of 
Me (equilibrium moisture content) is relatively 
small compared with that of M or M0 (Akgun 
and Doymaz, 2005).  

 
ANFIS model 

Fuzzy inference systems (FISs) and ANNs 
can be combined into an integrated system 
named ANFIS; the integrated system has the 
advantages of both ANNs (e.g., learning 
abilities, optimization abilities, and 
connectionist structure) and FISs (e.g., human 
like if–then rules, and ease of incorporating 
expert knowledge available in linguistic terms) 
(Yolmeh et al., 2014).  

In ANFIS technique, the neural network 
learning functions are used for refining each 
part of the fuzzy knowledge separately. One 
method for the derivation of a fuzzy rule base 
is to use the self learning features of artificial 
neural networks, to define the membership 
function (MF) based on input– output data. In 
this study, a hybrid training method (the 
combination of least-squares and back 
propagation algorithms) was applied as the 
training method of the ANFIS.   



Estimation of papaw (Carica papaw L.) moisture content using…   769 

ANFIS modeling was launched by 
providing a data set of input-output data 
points. The data order was the first randomized 
and then all data were divided into three 
partitions: 60, 10 and 30% of total data were 
used for training, validating and testing the 
network, respectively. Each input-output pair 
contained three inputs (drying time, drying 
temperature and thickness) and one output 
(moisture ratio). It should be noted that the 
number of MFs applied for each input variable 
was chosen by trial and errors. The results 
were obtained using ANFIS toolbox of 
MATLAB 8.1 (reference the software 
provider).  

 
GA-ANN model 

In brief, the artificial neural network (ANN) 
is a renowned tool for solving complex, non-
linear biological systems and it can give 
logical results even in complicated cases or in 
the event of technological faults (Yousefi et 
al., 2013a). The most popular ANN is the 
back-propagation feed forward type, whose 
architecture is based on an input layer 
comprising all the input variables that feed the 
network, an output layer which comprises the 
response of ANN to the desired problem, and 
hidden layers which are placed between the 
two layers. The number of input neurons 
corresponds to the number of input variables 
into the neural network, and the number of 
output neurons is the same as the number of 
target output variables. The number of neurons 
in the hidden layer depends on the application 
of the network (Liu and Baughman, 1995). 
The optimum number of neurons in hidden 
layer is usually performed by trial and error 
method. The number of neurons which are 
respectively placed in the input, hidden and 
output layers, named topology. The 
performance of an ANN network is strongly 
affected by the topology used.  

Genetic algorithm (GA) is an optimization 
technique which can be used for training ANN 
to overcome inherent limitations of back-
propagation (BP). Genetic algorithm can be 
used in two different ways for training neural 
networks:  (a) Weights optimization and (b) 

structure and topology optimization (Irani and 
Nasimi, 2011). The methodology utilized in 
this work was a hybrid genetic algorithm–
neural network strategy. In learning process, 
weights and biases of neural network were 
optimized.  

The hyperbolic tangent activation functions 
f (x) (Eq. (2)) were used as the transfer 
function in the hidden and output layers, 
because lower normalized mean square error 
values were obtained for that comparing to 
sigmoid activation and linear functions.  
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The output neurons of the hidden and last 

layers are calculated by Eqs. (3) and (4) as 
follows: 
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where xi is a variable input, wji is 

connection weight between hidden and input 
neurons, wkj is connection weight between 
output and hidden neurons, wj0 and wk0 are 
biases for the jth and kth neuron, respectively, i 
is the number of neurons for input and j is the 
number of neurons for the hidden layer, and k 
is the number of output neurons. Output of the 

network, 
^

nl , was compared with the desired 
output, nl , in the training phase (training by 
GA), and the error in the form of mean square 
error (MSE) was calculated for all data. The 
MSE was obtained from the following 
equation: 

0.5

1

1 [( ) ( ) ] (5)
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Where h is the number of data in the 

training phase. The goal was to reduce the 
amount of errors. 

In this work, the collected data from the 
experiments were randomly divided into three 
partitions consisting training (60%), validation 
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(10%) and test (30%). To estimate the 
performance of the trained network, the testing 
data were compared with the data obtained by 
the network. The probabilities of the crossover 
and mutation operators were adjusted at 0.9 
and 0.01, respectively. 

Besides, a sensitivity analysis was carried 
out to provide a measure of the relative 
importance among the inputs of the neural 
network model and to indicate how the model 
output varied in response to variation of an 
input (Bahramparvar et al., 2014). In this 

research, the NeuroSolution software (version 
5.0, NeuroDimension, Inc., USA) was used to 
design the GA-ANN model. 

 
Results and discussion 

The amounts of MR of papaw slices 
obtained at different drying times for the three 
thicknesses and three temperatures 
experimented are depicted in Fig. 1 and Fig. 2, 
respectively.  

 
Fig. 1. The influence of papaw slices thickness on moisture ratio (MR) at 60 °C. 

 

 
Fig. 2. The influence of drying temperatures on moisture ratio (MR) for the slices with thickness of 7 mm. 

 
As it can be seen, the drying duration at 

drying temperature of 60 °C was increased 
(from 115 to 200 min) with increasing 

thickness from 3 to 7 mm. Similar results have 
been reported for sweet potato (Diamante and 
Munro, 1991)  and tomato slices (Sadin et al., 
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2014).The air temperature also had a direct 
effect on drying rate.  As the air temperature 
increased from 40 to 60 °C for the slices with 
7 mm, the drying duration was reduced (from 
320 to 200 min). The results of statistical 
analysis by factorial test proved that drying 
time (5, 50, 100 and 150 min), temperature 
(40, 50 and 60 °C) and slices thickness (3, 5 
and 7mm) selected in this study had significant 
effects on moisture content (p < 0.05). At 
higher temperatures, due to the quick removal 
of moisture, the drying process occurred in a 
shorter period. The decrease in drying time 
with increase in drying temperature may be 
due to increase in water vapor pressure within 
the papaw slices, which enhances the 
migration of moisture. Similar observation was 
reported for apple purees (Vergara et al., 

1997). The moisture ratio of papaw reduced 
exponentially as the drying time increased. 
Continuous decrease in moisture ratio 
indicates that diffusion governed the internal 
mass transfer (Haghi and Amanifard, 2008).  

 
ANFIS 

The ANFIS network parameters such as the 
type and number of MF and epochs, have been 
changed to obtain the best results in terms of 
model validation. Fig. 3 shows the ANFIS 
architecture used in the study. The final 
ANFIS architecture for estimating the MR, 
with three triangular type MFs for each input 
(3 inputs) and linear MF for output, and 
constructed 27 rules resulted high accurate 
estimation.  

 

 
Fig. 3. The general structure of ANFIS for moisture ratio (MR) model with 3 inputs. 

 
As it can be seen in Fig. 4(a), the network is 

trained well, because the output data are 
completely near to the train ones and also the 
training error is low (0.0053) (Fig. 4(b)). 
Moreover, it was observed that the number of 
epochs had not a significant influence on the 
error calculated. Fig. 5 shows the experimental 

MR values against ANFIS predictions for test 
data (unseen data) points. As it can be seen, 
the system was completely efficient to 
estimate the values of MR obtained in all 
conditions experimented (R2 = 0.9967 and 
RMSE = 0.0161).  
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Fig. 4. (a) Comparison of training data with the output of developed FIS, (b) effect of the number of epochs on error obtained 

for trained network 
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Fig. 5. Experimental against predicted values of MR by ANFIS model for the test data set (R2 = 0.9967 and RMSE = 0.0161). 
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Figure 6 indicates two three-dimensional 
surfaces obtained after running the ANFIS 
model developed. As a result, the data show 
that decrease in slice thickness and increase in 
drying temperature both diminish the moisture 
content with increasing drying time. 
Ziaforoughi et al. (2016) reported similar 
results in the case of the effect of drying time 
and temperature using ANFIS model for 
infrared drying of quince slices. Yuzgec et al. 
(2009) developed an ANFIS model for 
fluidized bed drying to model Baker’s yeast 
production to predict the yield of dry product 

and product temperature. It was found that the 
overall performance of ANFIS model was 
better than the three other conventional 
modeling tools (R2 = 0.815-0.985). Al-
Mahasneh et al. (2016) applied ANFIS in 
comparison with conventional thin-layer 
drying models to estimate moisture ratio in 
open sun drying of roasted green wheat. 
ANFIS represented higher performance in 
comparison with two-term exponential mode 
with RMSE = 1.2×10-6 and R2 = 0.999 and 
RMSE = 0.038 and R2= 0.988, respectively.  

 

 
Fig. 6. Three-dimensional surface for the ANFIS model using two input variables of (a) time and thickness, (b) time and 

temperature. 
  

a 
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GA-ANN model 
GA-ANN model was developed for 

estimation of the moisture content obtained 
during hot-air drying of papaw slices in the 
cabinet dryer. To find the optimal network 
configuration, the number of neurons in 
hidden layer of ANN structure was changed by 
GA. The results revealed that GA-ANN model 

with 7 neurons in one hidden layer (topology 
of 3-7-1) could precisely estimate the amount 
of moisture content for the drying process of 
thin-layer papaw slices (R2 = 0.9936 and 
RMSE = 0.0220). The experimental data vs. 
predicted data by the best GA-ANN models 
are shown in Fig. 7.  
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Fig. 7. Experimental against predicted values of MR by GA-ANN model for the test data set     (R2 = 0.9936 and RMSE = 
0.0220). 

 
It can be seen from Fig. 7 that the predicted 

data are highly similar to the experimental 
ones, indicating high efficiency of GA-ANN 
models used in prediction. Table 1 shows the 
weights and bias extents of the best GA-ANN 
models used, which could be applied in a 
computer program for prediction of the 
amount of moisture content during the drying 
process.  

It can be observed that among the selected 
inputs, thickness was the most sensitive factor 
for estimation of the MR of papaw slices, 
followed by drying temperature and time. It 
means that the amount of moisture content for 
the papaw slices during hot-air drying were 
remarkably affected by thickness than the 
other studied favtors. Based on the literature 
review, the GA-ANNs had been a precise and 
appropriate instrument for modeling of drying 

process of banana (Mohebbi et al., 2011), 
kiwifruit (Fathi et al., 2011) and button 
mushroom (Salehi et al., 2017) slices. Yolmeh 
et al. (2014) developed ANFIS and GA-ANN 
models to model the influence of annatto dye 
on Salmonella enteritidis population in 
mayonnaise using three inputs (annatto dye 
concentration at 0, 0.1, 0.2 and 0.4 %, storage 
time of 1–20 days and storage temperatures at 
4 and 25 °C). Their results showed that both 
ANFIS and GA-AN N were able to predict 
S.enteritidis population with high accuracy of 
0.998 and 0.999, respectively. The high 
performance of GA-ANN based model even 
reported in the case of prediction of amount of 
glucose release during in vitro gastrointestinal 
digestion of native and chemically modified 
starches (r = 0.984-0.993 and RMSE = 0.338-
0.588) (Yousefi and Razavi, 2017) 
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Table 1. The bias and weights values for the optimized GA-ANN models obtained 

Hidden neurons Bias Input neurons  Output neurons 
Time Temperature Thickness  Moisture ratio (MR) 

1 0.942 0.680 -0.177 0.110  -0.266 
2 0.358 0.011 0.135 1.158  0.597 
3 -0.801 0.082 -2.647 0.069  0.429 
4 -2.464 -1.511 0.064 -0.011  0.876 
5 -0.140 -0.716 -0.002 0.448  0.002 
6 1.145 0.341 -0.062 0.274  -0.442 
7 -0.211 -1.068 0.239 -0.106  -0.177 

Bias      0.437 
In addition, in this study to find the sensitiveness of GA-ANN models used toward the selected inputs, sensitivity analysis was 

performed (Fig. 8). The sensitivity analysis demonstrates that which of the inputs has the greatest influence on the output and has 
more control on the amount of output. 
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Fig. 8. The sensitivity of moisture ratio (MR) to the input variables. 

 
Estimation of effective diffusivity coefficient 

It is reported that the drying characteristics 
of biological products in falling rate period can 
be described by using Fick’s second law of 
diffusion (Falade and Solademi, 2010). Crank 
(1975) solved this equation and introduced the 
Eq. (6), which can be used for slab geometry 
with uniform initial moisture diffusion, 
constant diffusivity and insignificant 
shrinkage: 

2 2
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In this equation, Deff is the effective 
diffusivity (m2/s); n is positive integer, t is 
drying time, and L is the half thickness of the 
slab in samples (m). In practice, only the first 
term in Eq. (6) is used yielding: 
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Therefore, Deff can be calculated from the 

slope of Eq. (7) using natural logarithm plot of 
MR versus drying time.  

The calculated Deff values for different 
drying temperatures are shown in Fig. 9. Deff 
value for papaw slices increased with air 
temperature. This value for papaw slices was 
within the range of 6.93 ×10-10 to 1.50×10-9 

m2/s over the temperature range. It has been 
reported that the Deff value for food materials 
is within the range of 10-11 to 10-9 (Sadin et al., 
2014). The results obtained were in agreement 
with the results of other studies (Doymaz, 
2007; Kaleemullah and Kailappan, 2005;  
Sacilik et al., 2006).  

The effective moisture diffusivity 
represents overall mass transport of moisture 
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in the material, including liquid diffusion, 
vapor diffusion, or any other possible mass 
transfer mechanism (Afzal and Abe, 1998).  

 
Estimation of activation energy 

The dependence of Deff to temperature can 
be explained using the Arrhenius-type 
relationship (Simal et al., 1996). This matter is 
shown in the following equation: 

 

0 exp (8)
( 273.15)
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eff

ED D
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In this equation, D0 is the pre-exponential 

factor of Arrhenius equation (m2s-1), Ea is the 
activation energy (kJ/mol), T is the drying 
temperature (°C) and R is the gas constant (kJ/ 
(mol.K)). 

The Ea can be calculated from the slope of 
the plot on ln (Deff) vs. 1/ (T+273.15) (Fig. 
10). This value was 32.5 (kJ/mol) for papaw 
slices. This value was lower than the Ea of 
green peppers drying (51.4 kJ/ mol) 
(Kaymak‐Ertekin, 2002), mint drying (82.93 
kJ/mol) (Park et al., 2002), but was higher than 
that of red chillies drying (24.47 kJ/ mol) 
(Kaleemullah and Kailappan, 2005).  

 

 
Fig. 9. Effect of drying temperature on the effective moisture diffusivity in papaw slices. 

 

 
Fig. 10. Effect of drying temperature on the effective moisture diffusivity for calculation of activation energy. 
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Conclusions 
The proficiency of ANFIS and GA-ANN 

modeling techniques for estimation of 
moisture content of papaw slices (3, 5 and 7 
mm) during hot-air drying (40, 50 and 60 °C) 
was investigated. Accordingly, the results 
demonstrated that ANFIS model with three 
triangular type MFs (trimf) for all input 
variables (drying time, drying temperature, 
slice thickness) and linear for output (moisture 
ratio) gives the best fitting with the 
experimental data, which made it possible to 

predict the MR with high precision (R2 = 
0.9967 and RMSE = 0.0161). In addition, it 
was found that GA-ANN technique with 1 
hidden layer including 7 neurons (topology of 
3-7-1), predicts the nearest data to the 
experimental data (R2 = 0.9936 and RMSE = 
0.0220). More sensitivity of MR to slice 
thickness observed in this study demonstrates 
that this factor plays more significant role in 
hot-air drying process of papaw. 
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فازي و - ی عصبیتخمین میزان محتواي رطوبتی میوه پاپایا با استفاده از سیستم تلفیق
شبکه عصبی-الگوریتم ژنتیک  

 
 *علیرضا یوسفی                                                         

 

22/11/1395تاریخ دریافت:   
30/02/1396تاریخ پذیرش:   

  چکیده 1
) براي مدلسازي سینتیک خشک شـدن  GA-ANNشبکه عصبی (-) و الگوریتم ژنتیکANFISفازي (-لفیقی عصبیدر این تحقیق از سیستم ت

دقیقه)، دمـاي خشـک    0-320هاي پاپایا به وسیله هواي داغ استفاده گردید. ورودي هاي سیستم مدلسازي شامل سه ورودي زمان خشک شدن (ورقه
) بود. در طراحـی سیسـتم   MRمیلی متر) و خروجی سیستم شامل نسبت رطوبتی ( 7و  5، 3ها (هدرجه سانتیگراد) و ضخامت ورق 60و  50، 40شدن (

داراي  ANFISقانون استفاده گردید. نتایج نشان داد که داده هاي پیش بینی شـده توسـط سیسـتم     27از توابع عضویت مثلثی و  ANFISمدلسازي 
نرون در  7بهینه شده، شامل  ANN-GA). همچنین سیستم مدلسازي 0.0161RMSE= 0.9967, 2R =تطبیق بالایی با نتایج آزمایشگاهی بود (

هاي پاپایا در بازه دمـایی  ). ضریب انتشار موثر ورقهRMSE2R ,0.9936 =0.0220 =بینی نمود (لایه مخفی، با دقت بالایی میزان رطوبت را پیش
کیلـوژول بـر    32.5ربع بر ثانیه تعیین شد. همچنین مقدار بدست آمده براي انرژي فعالسازي (مترم × 101.50-09و  × 106.93-10مورد آزمایش بین 

  مول) به خوبی تاثیر دماي خشک کردن بر روي ضریب انتشار را نشان داد.
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