نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم و صنایع غذایی، دانشکده صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی، گرگان، ایران.

2 گروه علوم و صنایع غذایی، موسسه آموزش عالی بهاران، گرگان، ایران.

چکیده

روغن پوست پرتقال، طعم دهنده ی پرمصرف صنعتی، در مجاورت هوا، نور، رطوبت و دمای بالا فرار و از نظر شیمیایی ناپایدار می باشد. نانوکمپلکس های بیوپلیمری، دسته ای از نانو حامل هایی هستند که بیشتر با استفاده از برهم کنش های الکترواستاتیک بین گروه های باردار پلی ساکاریدها و پروتئین ها تولید می شوند. این نانوذرات توانایی حمل، حفاظت و افزایش زیست دسترسی ترکیبات غذا- دارو را دارند. از این رو در این پژوهش، نانوکمپلکس های بیوپلیمری پروتئین آب پنیر- پکتین به عنوان حامل روغن پوست پرتقال تولید شد و ویژگی های محلول نانوکمپلکس تهیه شده با غلظت های مختلف پروتئین آب پنیر (4، 6 و 8 %)، پکتین (5/0، 75/0 و 1 %) و مقادیر مختلف pH (3، 6 و 9) مورد بررسی قرار گرفت. ویسکوزیته، پایداری و رنگ (شاخصL*) تیمارهای طراحی شده، به روش سطح پاسخ بررسی شد. نتایج نشان داد پروتئین آب پنیر 4% و پکتین 1% در 3pH= و 9 pH= به ترتیب کمترین و بیشترین پایداری را دارا بودند. همچنین این غلظت ها در 3pH= بیشترین ویسکوزیته و بیشترین L* را نیز نشان دادند. کمترین ویسکوزیته در پروتئین آب پنیر 6% و پکتین 75/0% در 3pH= بدست آمد که به دلیل نامتعادل بودن غلظت ها، کمپلکسی تشکیل نشد و جدایی فازها رخ داد. کمترین L* را نیز پروتئین آب پنیر4% و پکتین 5/0% در 9 pH= داشته است. در نهایت پروتئین آب پنیر 4% و پکتین 1% در3pH= به دلیل تشکیل کمپلکس قوی و مناسب، به عنوان نمونه ی بهینه انتخاب شد. اندازه ی ذرات و پتانسیل زتای نمونه ی بهینه به ترتیب nm 160 و mV53/0- بدست آمد.

کلیدواژه‌ها

خوش منظر، م.، قنبرزاده، ب.، همیشه کار، ح.، صوتی خیابانی، م.، رضایی مکرم، ر.، 1391، بررسی عوامل موثر بر اندازه ذرات، پتانسیل زتا و ویژگی های رئولوژیک پایا در سامانه کلوئیدی حاوی نانو ذرات کاپاکاراگینان-کازئینات سدیم، مجله پژوهش و نوآوری در علوم و صنایع غذایی، 1(4)، 272- 255.
Anal, A.K., Tobiassen, A., Flanagan, J., Singh, H., 2008. Preparation and characterization of nanoparticles formed by chitosan–caseinate interactions. Colloids and Surfaces B: Biointerfaces 64, 104-110.
Arroyo-Maya, I.J., McClements, D.J., 2015. Biopolymer nanoparticles as potential delivery systems for anthocyanins: Fabrication and properties. Food Research International 69, 1-8.
Assadpour, E., Maghsoudlou, Y., Jafari, S.-M., Ghorbani, M., Aalami, M., 2016. Optimization of folic acid nano-emulsification and encapsulation by maltodextrin-whey protein double emulsions. International journal of biological macromolecules 86, 197-207.
Bedie, G.K., Turgeon, S.L., Makhlouf, J., 2008. Formation of native whey protein isolate–low methoxyl pectin complexes as a matrix for hydro-soluble food ingredient entrapment in acidic foods. Food Hydrocolloids 22, 836-844.
Harnsilawat, T., Pongsawatmanit, R., McClements, D.J., 2006. Stabilization of model beverage cloud emulsions using protein-polysaccharide electrostatic complexes formed at the oil-water interface. Journal of agricultural and food chemistry 54, 5540-5547.
Hosseini, A., Jafari, S.M., Mirzaei, H., Asghari, A., Akhavan, S., 2015. Application of image processing to assess emulsion stability and emulsification properties of Arabic gum. Carbohydrate Polymers 126, 1-8.
Jafari, S.M., He, Y., Bhandari, B., 2007. Encapsulation of nanoparticles of d-limonene by spray drying: role of emulsifiers and emulsifying techniques. Drying Technology 25, 1069-1079.
Jones, O., Decker, E.A., McClements, D.J., 2010. Thermal analysis of β-lactoglobulin complexes with pectins or carrageenan for production of stable biopolymer particles. Food Hydrocolloids 24, 239-248.
Jun-xia, X., Hai-yan, Y., Jian, Y., 2011. Microencapsulation of sweet orange oil by complex coacervation with soybean protein isolate/gum Arabic. Food Chemistry 125, 1267-1272.
Kaya, S., Tekin, A.R., 2001. The effect of salep content on the rheological characteristics of a typical ice-cream mix. Journal of Food Engineering 47, 59-62.
Lutz, R., Aserin, A., Wicker, L., Garti, N., 2009a. Double emulsions stabilized by a charged complex of modified pectin and whey protein isolate. Colloids and Surfaces B: Biointerfaces 72, 121-127.
Lutz, R., Aserin, A., Wicker, L., Garti, N., 2009b. Release of electrolytes from W/O/W double emulsions stabilized by a soluble complex of modified pectin and whey protein isolate. Colloids and Surfaces B: Biointerfaces 74, 178-185.
Madene, A., Jacquot, M., Scher, J., Desobry, S., 2006. Flavour encapsulation and controlled release – a review. International Journal of Food Science & Technology 41, 1-21.
Maroziene, A., De Kruif, C., 2000. Interaction of pectin and casein micelles. Food Hydrocolloids 14, 391-394.
Matalanis, A., Jones, O.G., McClements, D.J., 2011. Structured biopolymer-based delivery systems for encapsulation, protection, and release of lipophilic compounds. Food Hydrocolloids 25, 1865-1880.
Medina-Torres, L., Brito-De La Fuente, E., Torrestiana-Sanchez, B., Katthain, R., 2000. Rheological properties of the mucilage gum (Opuntia ficus indica). Food hydrocolloids 14, 417-424.
Peinado, I., Lesmes, U., Andres, A., McClements, J.D., 2010. Fabrication and morphological characterization of biopolymer particles formed by electrostatic complexation of heat treated lactoferrin and anionic polysaccharides. Langmuir 26, 9827-9834.
Pereyra, R., Schmidt, K.A., Wicker, L., 1997. Interaction and stabilization of acidified casein dispersions with low and high methoxyl pectins. Journal of Agricultural and Food Chemistry 45, 3448-3451.
Pino, J., Sanchez, M., Sanchez, R., Roncal, E., 1992. Chemical composition of orange oil concentrates. Food/Nahrung 36, 539-542.
Quintanilla-Carvajal, M., Camacho-Diaz, B., Meraz-Torres, L., Chanona-Perez, J., Alamilla-Beltran, L., Jimenez-Aparicio, A., Gutierrez-Lopez, G., 2010. Nanoencapsulation: A New Trend in Food Engineering Processing. Food Engineering Reviews 2, 39-50.
Rocha, G.A., Favaro-Trindade, C.S., Grosso, C.R.F., 2012. Microencapsulation of lycopene by spray drying: characterization, stability and application of microcapsules. Food and Bioproducts Processing 90, 37-42.
Ron, N., Zimet, P., Bargarum, J., Livney, Y., 2010. Beta-lactoglobulin–polysaccharide complexes as nanovehicles for hydrophobic nutraceuticals in non-fat foods and clear beverages. International Dairy Journal 20, 686-693.
Salminen, H., Weiss, J., 2014. Effect of pectin type on association and pH stability of whey protein—pectin complexes. Food biophysics 9, 29-38.
Terrisse, I., Seiller, M., Grossiord, J., Magnet, A., Le Hen-Ferrenbach, C., 1994. Application of rheological analysis to W/O/W multiple emulsions: effect of the incorporation of a coemulsifier. Colloids and Surfaces A: Physicochemical and Engineering Aspects 91, 121-128.
Wagoner, T.B., Foegeding, E.A., 2017. Whey protein–pectin soluble complexes for beverage applications. Food Hydrocolloids 63, 130-138.
Ye, A., 2008. Complexation between milk proteins and polysaccharides via electrostatic interaction: principles and applications–a review. International journal of food science & technology 43, 406-415.
Ye, A., Flanagan, J., Singh, H., 2006. Formation of stable nanoparticles via electrostatic complexation between sodium caseinate and gum arabic. Biopolymers 82, 121-133.
Zimet, P., Livney, Y.D., 2009. Beta-lactoglobulin and its nanocomplexes with pectin as vehicles for ω-3 polyunsaturated fatty acids. Food Hydrocolloids 23, 1120-1126.
Zimet, P., Rosenberg, D., Livney, Y.D., 2011. Re-assembled casein micelles and casein nanoparticles as nano-vehicles for ω-3 polyunsaturated fatty acids. Food Hydrocolloids 25, 1270-1276.
CAPTCHA Image