با همکاری انجمن علوم و صنایع غذایی ایران

نوع مقاله : مقاله پژوهشی فارسی

نویسندگان

گروه مهندسی مکانیک، دانشگاه صنعتی بیرجند.

چکیده

مغز پسته یکی از مهمترین محصولات صادراتی ایران محسوب می‌شود. بنابراین درجه‌بندی دقیق آن از اهمیت زیادی برخوردار است. این محصول بر اساس استاندارد ملی ایران، با شمارش تعداد پسته در 100 گرم به سه دسته درشت، متوسط و ریز تقسیم می­شود. در این مقاله با استفاده از روش ماشین­بینایی، از تعدای مغز پسته با اندازه و شکل­های کاملاً تصادفی تصویربرداری و ذخیره­سازی در رایانه انجام شد. سپس، عملیات پردازش تصویر شامل بهبود عکس مغز پسته­ها جهت افزایش دقت لبه­یابی صورت گرفت. جهت استخراج ابعاد هندسی شامل بزرگترین قطر و مساحت، فرآیند کالیبراسیون دقیق با یک صفحه شطرنجی انجام شد. در استاندارد ملی ایران توجهی به سالم یا شکسته بودن مغز پسته جهت درجه­بندی این محصول نشده است. لذا در این تحقیق، روش سری فوریه برای استخراج ویژگی­های مورفولوژیکی مغز پسته شامل گردی، کشیدگی، تقارن، مثلثی و مربعی بودن با استفاده از توصیف­گرهای مرتبه پایین مورد استفاده قرار گرفته است. با توجه به نتایج حاصل از عملیات کالیبراسیون، دقت اندازه­گیری با میانگین خطای 09/0 میلی‌متر حاصل شد. با توجه به نتایج آزمایش تجربی مشاهده می­شود، با استفاده از پردازش تصویر و تکنیک سری فوریه، امکان بهبود استاندارد فعلی از نظر افزایش سرعت، کاهش هزینه­ها و افزودن پارامترهای شکل مغز پسته جهت تعیین میزان سالم بودن این محصول، امکان­پذیر است.

کلیدواژه‌ها

عنوان مقاله [English]

Geometric and morphological characteristics measurement of pistachios using the machine vision

نویسندگان [English]

  • Seyyed Mohammad Emam
  • Amirmohammad Rezaiepoor
  • Aboalfazl Foorginejad

Department of Mechanical Engineering, Birjand University of Technology, Birjand, Iran.

چکیده [English]

Introduction: Pistachio cereals are one of the most important products in the export sector. Therefore, accurate grading of pistachios is very important. By counting the number of pistachios in 100gr according to the national standard of Iran, this product is classified into three categories of large, medium and small.
 Materials and methods: In this paper, the image of some pistachio cereals with different random size and shape was taken and stored in computers using the machine vision technique. Then, the image processing operations consisted of improving the pistachio images to increase the accuracy of edge detection was done. The exact calibration process was performed with a chessboard plate was conducted to extract the geometrical dimensions including the largest diameter and area. In the national standard of Iran, intact or broken pistachios are not considered to grade this product. Therefore, in this research, Fourier series method is used to extract morphological characteristics of pistachio cereals including roundness, elongation, asymmetry, triangularity and squareness using the low order descriptors. According to the results of the calibration operation, the dimensional measurement of pistachios with an average error of 0.09 mm is possible
 Results & Discussion: According to the experimental results, it is possible to improve the current standard of pistachio using image processing and fourier series techniques in terms of increasing measurement speed, reducing costs, and adding the shape characteristics of pistachios to determine the amount of intact or broken pistachios.

کلیدواژه‌ها [English]

  • Pistachio
  • Machine vision
  • Fourier series
  • Grading
رضوی، س. م. ع.، مظاهری نسب، م.، نیکفرو، ف. و ثنایی فرد، ح.، 2010، خواص فیزیکی و پردازش تصویر دانه پسته وحشی بنه، مجله پژوهش‌های علوم و صنایع غذایی ایران، 3 (2)، 61-71.
کمیته ملی استاندارد اندازه‌شناسی، اوزان و مقیاس‌ها، 1392، الک‌های آزمون و آزمون الک کردن- واژه نامه (استاندارد شماره 1598)، موسسه استاندارد و تحقیقات صنعتی ایران، ایران.
کمیته ملی استاندارد ساختمان و معدن، 1381، سنگدانه های بتن-ویژگی‌ها (استاندارد شماره 302)، موسسه استاندارد و تحقیقات صنعتی ایران، ایران.
کمیته ملی استاندارد خوراک و فرآورده های کشاورزی، 1392، مغز پسته-ویژگی‌ها و روش‌های آزمون (استاندارد شماره 218)، موسسه استاندارد و تحقیقات صنعتی ایران، ایران.
لرستانی، ع.، امید م.، طباطبایی فر، س. ا.، برقعی، ع. م. و باقری شورکی، س.، 1386، طراحی و ارزیابی یک سیستم هوشمند درجه‌بند سیب گلدن دلیشز با منطق فازی، مجله علوم کشاورزی ایران، 38 (1) 1-10.
Bowman, E. T., Soga, K., & Drummond, W., 2001, Particle shape characterisation using Fourier descriptor analysis. Geotechnique, 51(6), 545-554.
Clark, M. W., 1981, Quantitative shape analysis: a review. Journal of the International Association for Mathematical Geology, 13(4), 303-320.
Kader, A. A., Heintz, C. M., Labavitch, J. M., & Rae, H. L., 1982, Studies related to the description and evaluation of pistachio nut quality. Journal of the American Society for Horticultural Science, 107(5), 812-816.
Mahmoudi, A., Omid, M., Aghagolzadeh, A., & Borgayee, A. M., 2006, Grading of Iranian's export pistachio nuts based on artificial neural networks. International Journal of Agriculture and Biology, 8 (3), 371-376.
Nezhad, R., & Ebrahımy, F., 2014, an intelligent-based mechatronics system for grading the iranian's export pistachio nuts into hulled and non-hulled groups. Indian Journal of Scientific Research, 7(1), 1063-1071.
Nouri-Ahmadabadi, H., Omid, M., Mohtasebi, S. S., & Firouz, M. S., 2017, Design, development and evaluation of an online grading system for peeled pistachios equipped with machine vision technology and support vector machine. Information Processing in Agriculture, 4(4), 333-341.
Xingfang, Y., Yumei, H., & Feng, G., 2010, October, A simple camera calibration method based on sub-pixel corner extraction of the chessboard image. In Intelligent Computing and Intelligent Systems (ICIS), 2010 IEEE International Conference on (Vol. 3, pp. 688-692). IEEE
CAPTCHA Image