نوع مقاله : مقاله پژوهشی فارسی

نویسندگان

1 گروه علوم و صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی ساری.

2 پژوهشکده ژنتیک و زیست فناوری، دانشگاه کشاورزی و منابع طبیعی ساری.

چکیده

بتاگلوکان یک پلی‌ساکارید خطی، بدون انشعاب، غیرنشاسته‌ای و محلول در آب است که در دیواره سلولی غلات به‌ویژه یولاف وجود دارد. با توجه به تأثیر فعالیت آنزیمی بر پایداری لیپیدهای یولاف لازم است که این آنزیم‌ها در طی فرآوری یولاف غیر‏فعال شوند. یکی از روش‌های موجود برای غیرفعال کردن آنزیم‌ها، فرآیند هیدروترمال است. در این پژوهش فرایند هیدروترمال با اتوکلاو در دماهای۱۱۰ ، ۱۲۰ و ۱۳۰ درجه سانتی‌گراد در دو زمان ۱۰ و ۲۰ دقیقه بر روی آرد یولاف انجام شد و بتاگلوکان استخراجی از آن به روش آبی از نظر خواص فیزیکو شیمیایی و عملکردی و نیز رئولوژیکی مورد برررسی قرار گرفت. بتاگلوکان حاصل از آرد یولاف هیدروترمال شده در ۱۲۰ درجه سانتی‌گراد به مدت ۱۰ دقیقه بالاترین حلالیت را در ۲۵ درجه سانتی‌گراد و کمترین حلالیت را در دمای ۵۰ درجه سانتی‌گراد و  تیمار ۱۲۰ درجه سانتی‌گراد به مدت ۲۰ دقیقه بیشترین حلالیت را در ۷۵ درجه سانتی‌گراد داشت. میزان کف‌کنندگی بتاگلوکان استخراجی از آرد یولاف هیدروترمال شده در دمای ۱۳۰درجه سانتی‌گراد به مدت ۱۰ دقیقه، از سایر تیمارها کمتر بود و بتاگلوکان حاصل از تیمار هیدروترمال شده در دمای ۱۱۰ درجه سانتی‌گراد به مدت ۱۰ دقیقه از ثبات کف بالاتری برخوردار بود. در بررسی خصوصیات رئولوژیکی، تاثیر سرعت برشی بر میزان ویسکوزیته نشان داد که با افزایش سرعت برشی، میزان ویسکوزیته در تمامی نمونه‌ها کاهش یافت و بیشترین مقدار ویسکوزیته را بتاگلوکان حاصل از آرد یولاف هیدروترمال شده در دمای ۱۲۰ درجه سانتی‌گراد به مدت ۱۰ دقیقه داشت. در آزمون نوسانی شامل روبش دما، پارامترهای اندازه‌گیری شده شامل مدول الاستیک G′ و مدول ویسکوز G″ بودند که مقدار G′ و G″ در نمونه بتاگلوکان استخراجی از آرد یولاف هیدروترمال شده در تمامی نمونه‌ها کاهش یافت و نیز مدول الاستیک و ویسکوز بتاگلوکان استخراج شده از آرد هیدروترمال شده در دمای ۱۲۰ درجه به مدت ۱۰ دقیقه از سایر تیمارها بیشتر بود. در روبش فرکانس در فرکانس‌های پایین‌تر، G″ از G′ بزرگتر است و هر دو با افزایش فرکانس افزایش می‌یابند و مقدار G′ وG″ و η* بتاگلوکان استخراج شده از آرد هیدروترمال شده در دمای ۱۲۰ درجه به مدت ۱۰ دقیقه از سایر تیمارها در فرکانس ۱ و ۱۰ هرتز بیشتر بود.

کلیدواژه‌ها

AACC (2000) Approved methods of the American association of cereal chemists.10th edition, Minesota.
AOAC (2005) Official method of Analysis. 18th Edition, Association of Officiating Analytical Chemists, Washington DC, Method 935.14 and 992.24.
Ahmad, A., Anjum, F. M., Zahoor, T., Nawaz, H., & Din, A. (2009). Physicochemical and functional properties of barley β‐glucan as affected by different extraction procedures. International journal of food science & technology, 44(1), 181-187.
Alghooneh, A., Razavi, S. M. A., & Behrouzian, F. (2017). Rheological characterization of hydrocolloids interaction: A case study on sage seed gum-xanthan blends. Food Hydrocolloids, 66, 206-215.
Alghooneh, A., Razavi, M.A., Behrouzian, F., (2017(. Rheological characterization of hydrocolloids interaction: A case study on sage seed gum-xanthan blends. Food Hydrocolloids,66,1-10.
Amiri Oghdai, S. S., Aalami, M., Jafari, S. M., Sadeghi Mahonak, A., (1389). Physicochemical and Rheological Properties of Beta-Glucan Extracted from Hull-Less Barlay. Iranian Journal of Food Science and Technology, 6 (4): 286-296. [in Persian].
Khan, A. A., Gani, A., Masoodi, F. A., Amin, F., Wani, I. A., Khanday, F. A., & Gani, A. (2016). Structural, thermal, functional, antioxidant & antimicrobial properties of β-d-glucan extracted from baker's yeast (Saccharomyces cereviseae)—Effect of γ-irradiation. Carbohydrate polymers, 140, 442-450.
Behrouzian, F., Razavi, S. M., & Alghooneh, A. (2017). Evaluation of interactions of biopolymers using dynamic rheological measurements: Effect of temperature and blend ratios. Journal of Applied Polymer Science, 134(5).
Betancur-Ancona, D., Lopez-Luna, J., & Chel-Guerrero, L. (2003). Comparison of the chemical composition and functional properties of Phaseolus lunatus prime and tailing starches. Food Chemistry, 82(2), 217-225.
Brennan, C. S., & Cleary, L. J. (2005). The potential use of cereal (1→ 3, 1→ 4)-β-D-glucans as functional food ingredients. Journal of cereal Science, 42(1), 1-13.
Burkus, Z., & Temelli, F. (1998). Effect of extraction conditions on yield, composition, and viscosity stability of barley β‐glucan gum. Cereal Chemistry, 75(6), 805-809.
Burkus, Z., & Temelli, F. (2005). Rheological properties of barley β-glucan. Carbohydrate Polymers, 59(4), 459-465.
Butt, M. S., Tahir-Nadeem, M., Khan, M. K. I., Shabir, R., & Butt, M. S. (2008). Oat: unique among the cereals. European journal of nutrition, 47(2), 68-79.
Castellani, O and Al-Assaf, S., (2010). Hydrocolloids with emulsifying capacity. Part 2-adsorption properties at the n-hexadecane–Water interface. Food hydrocolloids 24: 121-130.
Descroix, K., Ferrières, V., Jamois, F., Yvin, J. C., & Plusquellec, D. (2006). Recent progress in the field of β-(1, 3)-glucans and new applications. Mini reviews in medicinal chemistry, 6(12), 1341-1349.
Djabourov, M., Leblond, J., & Papon, P. (1988). Gelation of aqueous gelatin solutions. I. Structural investigation. Journal de physique, 49(2), 319-332.
Doehlert, D.C., Angelikousis, S., Vick, B., (2010). Accumulation of oxygenated fatty Acids in oat lipids during Storage. Cereal Chemistry, 87(6), 532–537.
Edvin, R., Morris, L., Taylor, J., Norman Cutler, A ., (1983). Oral perception of viscosity in fluid foods and model systems. Journol of Texture Studies, 14(4), 377-395.
Gamel, T. H., Abdel-Aal, E. S. M., Ames, N. P., Duss, R., & Tosh, S. M. (2014). Enzymatic extraction of beta-glucan from oat bran cereals and oat crackers and optimization of viscosity measurement. Journal of Cereal Science, 59(1), 33-Gardiner T., (2000). Beta–glucan biological activities: A review. Glycosci.1:1–6.
Grundy, M. M. L., Quint, J., Rieder, A., Ballance, S., Dreiss, C. A., Butterworth, P. J., & Ellis, P. R. (2017). Impact of hydrothermal and mechanical processing on dissolution kinetics and rheology of oat β-glucan. Carbohydrate polymers, 166, 387-397.
Horwitz, W., (2002). Of cial Methods of Analysis (17th ed.), Association of Official Analytical Chemists, Inc.: Gaithersburg, USA.
Irakli, M., Biliaderis, C. G., Izydorczyk, M. S., & Papadoyannis, I. N. (2004). Isolation, structural features and rheological properties of water‐extractable β‐glucans from different Greek barley cultivars. Journal of the Science of Food and Agriculture, 84(10), 1170-1178.
Jabeen, S., Chat, O. A., Maswal, M., Ashraf, U., Rather, G. M., & Dar, A. A. (2015). Hydrogels of sodium alginate in cationic surfactants: Surfactant dependent modulation of encapsulation/release toward Ibuprofen. Carbohydrate polymers, 133, 144-153.
Karaman, S., Yilmaz, M. T., & Kayacier, A. (2011). Simplex lattice mixture design approach on the rheological behavior of glucomannan based salep-honey drink mixtures: An optimization study based on the sensory properties. Food Hydrocolloids, 25(5), 1319-1326.
Khan, A. A., Gani, A., Masoodi, F. A., Amin, F., Wani, I. A., Khanday, F. A., and Gani, A., (2016). Structural, thermal, functional, antioxidant and antimicrobial properties of rm Beta-D-glucan extracted from baker’s yeast (Saccharomyces cereviseae) - Effect of rmgamma-irradiation, Carbohydrate Polymers. 140, 442-450.
Kerckhoffs, D. A., Brouns, F., Hornstra, G., & Mensink, R. P. (2002). Effects on the human serum lipoprotein profile of β-glucan, soy protein and isoflavones, plant sterols and stanols, garlic and tocotrienols. The Journal of nutrition, 132(9), 2494-2505.
Liu, R., Li, J., Wu, T., Li, Q., Meng, Y., & Zhang, M. (2015). Effects of ultrafine grinding and cellulase hydrolysis treatment on physicochemical and rheological properties of oat (Avena nuda L.) β-glucans. Journal of cereal science, 65, 125-131.
Lazaridou, A., & Biliaderis, C. G. (2007). Molecular aspects of cereal β-glucan functionality: Physical properties, technological applications and physiological effects. Journal of cereal science, 46(2), 101-118.
Lee, S. H., Jang, G. Y., Kim, M. Y., Hwang, I. G., Kim, H. Y., Woo, K. S., & Jeong, H. S. (2016). Physicochemical and in vitro binding properties of barley β-glucan treated with hydrogen peroxide. Food chemistry, 192, 729-735.
Izydorczyk, M. S., & Dexter, J. E. (2008). Barley β-glucans and arabinoxylans: Molecular structure, physicochemical properties, and uses in food products–a Review. Food Research International, 41(9), 850-868.
attila, P., Pihlava, J. M., & Hellström, J. (2005). Contents of phenolic acids, alkyl-and alkenylresorcinols, and avenanthramides in commercial grain products. Journal of Agricultural and Food Chemistry, 53(21), 8290-8295.
Mandala, I. G., Savvas, T. P., & Kostaropoulos, A. E. (2004). Xanthan and locust bean gum influence on the rheology and structure of a white model-sauce. Journal of Food Engineering, 64(3), 335-342.
Manoj, P., Kasapis, S., & Hember, M. W. (1997). Sequence-dependent kinetic trapping of biphasic structures in maltodextrin-whey protein gels. Carbohydrate Polymers, 32(2), 141-153.
Pourmohammadi, K., Aalami, M., Shahedi, M., Sadeghi Mahoonak, A., (1390). Effect of microbial transglutaminase on dough rheological properties of wheat flour supplemented with hull-less barley flour. Journal of Food Science and Technology, 21: 269-279. [in Persian].
Rao, M. A., & Anantheswaran, R. C. (1982). Rheology of fluids in food-processing. Food Technology, 36(2), 116-126.
Rafe, A., Razavi, S. M., & Farhoosh, R. (2013). Rheology and microstructure of basil seed gum and β-lactoglobulin mixed gels. Food Hydrocolloids, 30(1), 134-142.
Ryu, J. H., Lee, S., You, S., Shim, J. H., & Yoo, S. H. (2012). Effects of barley and oat β-glucan structures on their rheological and thermal characteristics. Carbohydrate polymers, 89(4), 1238-1243.
Shah, A., Gani, A., Ahmad, M., Ashwar, B. A., & Masoodi, F. A. (2016). β-Glucan as an encapsulating agent: Effect on probiotic survival in simulated gastrointestinal tract. International journal of biological macromolecules, 82, 217-222.
Skendi, A., Papageorgiou, M., & Biliaderis, C. G. (2009). Effect of barley β-glucan molecular size and level on wheat dough rheological properties. Journal of Food Engineering, 91(4), 594-601.
Skendi, A., Biliaderis, C. G., Lazaridou, A., & Izydorczyk, M. S. (2003). Structure and rheological properties of water soluble β-glucans from oat cultivars of Avena sativa and Avena bysantina. Journal of cereal science, 38(1), 15-31.
Temelli, F. (1997). Extraction and functional properties of barley β‐glucan as affected by temperature and pH. Journal of food science, 62(6), 1194-1201.
Wood, P. J. (2007). Cereal β-glucans in diet and health. Journal of cereal science, 46(3), 230-238.
Worrasinchai, S., Suphantharika, M., Pinjai, S., & Jamnong, P. (2006). β-Glucan prepared from spent brewer's yeast as a fat replacer in mayonnaise. Food hydrocolloids, 20(1), 68-78.
Xu, J., Inglett, G. E., Chen, D., & Liu, S. X. (2013). Viscoelastic properties of oat β-glucan-rich aqueous dispersions. Food chemistry, 138(1), 186-191.
Zhu, F., Du, B., & Xu, B. (2016). A critical review on production and industrial applications of beta-glucans. Food Hydrocolloids, 52, 275-288.
CAPTCHA Image