Azadbakht, M., Aghili, H., Ziaratban, A., & Vehedi Torshizi, M. (2017). Application of artificial neural network method to exergy and energy analyses of fluidized bed dryer for potato cubes. Energy, 120, 947–958.
Azadbakht, M., Torshizi, M. V., & Ziaratban, A. (2016). Application of Artificial Neural Network ( ANN ) in predicting mechanical properties of canola stem under shear loading. Agricultural Engineering International: CIGR Journal, 18(5), 413–424.
B. Khoshnevisan, Sh. Rafiee, M. Omid, M. Y. (2013). Prediction of environmental indices of Iran wheat production using artificial neural networks. International Journal of Energy and Environment, 4(2), 339–348.
Beale, R., & Jackson, T. (1998). Neural Computing: An Introduction. London, UK, Institude of Physics Publishing, Bristol BSI 6BE.
Galvis-Sanchez, A. C., Fonseca, S. C., Morais, A. M. M. B., & Malcata, F. X. (2004). Sensorial and physicochemical quality responses of pears (cv Rocha) to long-term storage under controlled atmospheres. Journal of the Science of Food and Agriculture, 84(13), 1646–1656.
Gurrieri, S., Miceli, L., Lanza, C. M., Tomaselli, F., Bonomo, R. P., & Rizzarelli, E. (2000). Chemical characterization of sicilian prickly pear (Opuntia ficus indica) and perspectives for the storage of its juice. Journal of Agricultural and Food Chemistry, 48(11), 5424–5431.
Jaramillo-Flores, M. E., Gonzalez-Cruz, L., Cornejo-Mazon, M., Dorantes-alvarez, L., Gutierrez-Lopez, G. F., & Hernandez-Sanchez, H. (2003). Effect of Thermal Treatment on the Antioxidant Activity and Content of Carotenoids and Phenolic Compounds of Cactus Pear Cladodes (Opuntia ficus-indica). Food Science and Technology International, 9(4), 271–278.
Kazem, A., Hassan, K., Mohamad-Jafar, M., & Mohsen, B. (2015). Postharvest physicochemical changes and properties of Asian ( Pyrus serotina Rehd .) & European ( Pyrus communis L .) pear cultivars Postharvest Fruit Physicochemical Changes and Properties of Asian. Hort. Environ. Biotechnol., 49(4)(2008), 244–252.
Li, W. L., Li, X. H., Fan, X., Tang, Y., & Yun, J. (2012). Response of antioxidant activity and sensory quality in fresh-cut pear as affected by high O2active packaging in comparison with low O2packaging. Food Science and Technology International, 18(3), 197–205.
Malakouti, M. J., Barzegar, M., Arzani, K., & Khoshghalb, H. (2009). Polyphenoloxidase activity, polyphenol and ascorbic acid concentrations and internal browning in Asian pear (Pyrus serotina Rehd.) Fruit during storage in relation to time of harvest. European Journal of Horticultural Science, 74(2), 61–65.
Mazloumzadeh, S. ., Alavi, S. ., & Nouri, M. (2008). Comparison of Artificial Neural and Wavelet Neural Networks for Prediction of Barley Breakage in Combine Harvester. Journal of Agriculture, 10(2), 181–195.
Meng, X., Zhang, M., & Adhikari, B. (2012). Prediction of storage quality of fresh-cut green peppers using artificial neural network. International Journal of Food Science & Technology, 47(8), 1586–1592.
Menhaj, M. (2000). Foundation of Artifitioal Neural Networks. Amir Kabir univercity.
Salehi, F. 1, Gohari Ardabili, A., Nemati, A. 2, & Latifi Darab, R. (2017). Modeling of strawberry drying process using infrared dryer by genetic algorithm–artificial neural network method. Journal Food Science and Technology, 14, 105–114.
Salehi, F., & Razavi, S. M. A. (2012). Dynamic modeling of flux and total hydraulic resistance in nanofiltration treatment of regeneration waste brine using artificial neural networks. Desalination and Water Treatment, 41(1–3), 95–104.
Soleimanzadeh, B., Hemati, L., Yolmeh, M., & Salehi, F. (2015). GA-ANN and ANFIS models and salmonella enteritidis inactivation by ultrasound. Journal of Food Safety, 35(2), 220–226.
Taheri-Garavand, A., Karimi, F., Karimi, M., Lotfi, V., & Khoobbakht, G. (2018). Hybrid response surface methodology–artificial neural network optimization of drying process of banana slices in a forced convective dryer. Food Science and Technology International, 24(4), 277–291.
Tavarini, S., Degl’Innocenti, E., Remorini, D., Massai, R., & Guidi, L. (2008). Antioxidant capacity, ascorbic acid, total phenols and carotenoids changes during harvest and after storage of Hayward kiwifruit. Food Chemistry, 107(1), 282–288.
Torkashvand, A. M., Ahmadi, A., & Nikravesh, N. L. (2017). Prediction of kiwifruit firmness using fruit mineral nutrient concentration by artificial neural network (ANN) and multiple linear regressions (MLR). Journal of Integrative Agriculture, 16(7), 1634–1644.
Yordi, E., Koeling, R., Mota, Y., Matos, M. J., Santana, L., Uriarte, E., & Molina, E. (2015). Application of KNN algorithm in determining the total antioxidant capacity of flavonoid-containing foods. In Proceedings of The 19th International Electronic Conference on Synthetic Organic Chemistry (p. e002). Basel, Switzerland: MDPI. https://doi.org/10.3390/ecsoc-19-e002
Yurtlu, Y. B., & Erdoǧan, D. (2005). Effect of storage time on some mechanical properties and bruise susceptibility of pears and apples. Turkish Journal of Agriculture and Forestry, 29(6), 469–482.
Zarifneshat, S., Rohani, A., Ghassemzadeh, H. R., Sadeghi, M., Ahmadi, E., & Zarifneshat, M. (2012). Predictions of apple bruise volume using artificial neural network. Computers and Electronics in Agriculture, 82, 75–86.
Send comment about this article