Document Type : Research Article
Authors
1 Department of Food Science and Technology, Sari Agricultural Sciences and Natural Resources University
2 Laboratory control of food, beverage and cosmetic, Food and Drug Department, Kermanshah University of Medical Sciences
Abstract
Introductıon: Nuts are one of the major resources of bioactive compounds such as tocopherols, tocotrienols, sterols (Jensen and Lauridsen, 2007). Tocopherols include 8 natural homologues that all of them belongs to vitamin E group (Chun, 2002). It is well known that vitamin E has good antioxidant activity and among its isomers, α-tocopherol and γ-tocopherol have highest biological activity and free radical scavenging, respectively (Grilo et al., 2014). In recent years, the beneficial health effects of vitamin E on some disease such as cancer and heart disorders attract researcher’s attentions (Wagner et al., 2004).
Roasting process changes the chemical and nutritional properties of nuts, including antioxidants, vitamins, colors, and aroma mostly through Maillard reaction (Alamprese et al., 2009; Ballistreri et al., 2009). Due to the importance of vitamin E antioxidant activity and its heat sensitivity, the residual amounts of them after different roasting conditions were investigated.
Materials and methods: Samples were spreaded in alominum foil and placed in forced air oven at 120 and 150 ºC and different time intervals including 0, 20, 30 and 40 min. After roasting, samples were powdered, then 0.5 g of each sample plus 0.05 g ascorbic acid were added to 0.5 mL ethanol (90.2%) and 0.5 mL KOH and mixed in a tube (16× 125 mm). The tube was then placed in water bath for 30 min. Then, the tube were placed in ice bath for 5 min, then 3 mL deionized water, 5 mL hexane were added to the tube and vortexed for 30 s and centrifuged for 10 min at 1000 rad/s at ambient temperature. The extraction was done twice. Hexane layer evaporated with nitrogen then 1 mL of mobile phase added to tube and vortexed again. Prepared samples then were injected to HPLC (Knuer- Germany).
Results and discusion: Based on the obtained results, α-tocopherol content in almond was more than γ-tocopherol. After 20 and 30 min of roasting, at 150 and 120 ºC respectively, the amount of α-tocopherol slightly increased, while it decreased with increasing roasting time. γ-tocopherol content in almond at both temperatures also increased up to 20 min roasting and decreased till the end of process. In hazelnut, at both temperatures up to 20 min and then decreased till end of roasting process. This trend was shown for peanut tocopherols as well. With increasing in roasting time, α-tocopherol and γ-tocopherol content decreased to their initial level. It has suggested that tocopherols which attached to the other components such as phospholipids released more conveniently under thermal treatment like roasting which leads to increase their concentrations at initial of thermal process. In pistachio, 150 and 120 ºC respectively caused to increase in γ-tocopherol content, respectively while its content decreased up to the end of roasting time (40 min). α-tocopherol content at both temperatures increased after 20 min, then decreased gradually as time passes. Results indicated that both time and temperature of roasting had a significant effect on α- and γ-tocopherol of four nuts. Although both of temperatures in our study significantly on increased vitamin E isomers at the start of roasting process, their contents decreased with increasing in roasting time. Maximum amount of both isomers were detected at 120 ºC after 30 min and at 150 ºC after 20 min.
Keywords
Send comment about this article