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Abstract 

Meat is a significant source of nutrition and has an important role in the human diet, and lack of 

monitoring of the quality and safety of meat can result in it being highly perishable and posing 

health threats. Determining safety through chemical methods is costly and time-consuming, 

without the ability to monitor in real-time. Therefore, nowadays assessing the quality of meat 

considers spectral techniques such as spectroscopic and spectral imaging, as promising tools and 

these strategies have recently undergone swift advancements and garnered heightened public 

attention. Therefore, the purpose of the present review paper is to present an overview of the latest 

advancements in spectral methods for assessing ground meat safety. The basic working principles, 

fundamental settings, analysis process, and applications of these techniques are described. By 

investigating the practical utilization possibilities of spectral detection technologies in the 

evaluation of meat safety, researchers discussed the present challenges and upcoming research 

prospects. Furthermore, the newest advances in the application of artificial intelligence 

accompanied by the mentioned techniques were also discussed. 
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Introduction: 

Meat is one of the necessary food products for human diet, which is mainly used by consumers 

due to its nutritional value and pleasantness.  Minced meat is a highly-regarded meat type and the 

authenticity of minced meat is among the most important criteria for customers to consider in meat 

purchase. Some of the purchasers even are ready to pay more to the assurance of meat safety 

(Miller, Carr, Ramsey, Crockett, & Hoover, 2001). However, economic profits and easiness of 

substitution in minced meat increase the possibility of adulteration of meat with low-cost and low-

quality meat or objectionable species (Boyacı et al., 2014; Kazemi, Mahmoudi, Veladi, Javanmard, 

& Khojastehnazhand, 2022). Processing activities on meat like grinding can expose the minced 

meat to the substitution adulteration. This is due to difficulty of minced meat identification, 

because of removal of morphological features (Kamruzzaman, Makino, & Oshita, 2016). This 

enables individuals to potentially commit fraud by replacing or substituting lower-grade meat. 

Therefore, meat industry has been challenged by some adulteration activities and it is significant 

to control the authenticity of this product intensively, because of high usage of meat among people 

and direct relation of its safety to the health of society. In addition to the economic aftermaths, the 

adulteration of meat species substitution can cause more issues like healthy problems (the lack of 

nutritional value) and religious problems (presence of pork in halal meat products or beef in Hindu 

diets) (López-Maestresalas et al., 2019; Premanandh, 2013). 

Thus, in order to prevent this issue, some traditional chemical methods, instrumental methods, 

sensory evaluations, and screening techniques have been utilized, over time. Some of the 

mentioned techniques include immunological detection and DNA-based approaches e.g. enzyme-

linked immunosorbent assay (ELISA) and Polymerase Chain Reaction (PCR and real-time PCR) 

(Edwards et al, 2021). Despite their reliability, specificity, and sensitivity features, these 

authentication methods suffer from various limitations such as being destructive, laborious and 

costly. Moreover, they need intricate laboratory activities carried out by professional personnel 

(Edwards, Manley, Hoffman, & Williams, 2021). 

The drawbacks of traditional approaches have led to the creation of rapid, non-destructive, precise, 

and repeatable analytical methods for verifying and detecting contaminants in minced meat items. 

Recently, there has been considerable attention to the development of a fast and non-destructive 

technique that can be effectively utilized in a food processing setting. 

Recently, researchers have used spectral and imaging acquisition methods, along with Artificial 

Intelligence (AI), to non-destructively assess meat and its products. The application of 

authentication and/or adulterant detection has been explored through techniques like Near Infrared 

(NIR) spectroscopy, Raman spectroscopy, Fourier transform infrared spectroscopy, and spectral 

imaging (Shawky, El-Khair, & Selim, 2020). Nondestructive spectroscopic and spectral imaging 

methods provide a major advantage in that they allow for measuring the chemical and physical 

data of foodstuffs while preserving the substance intact. Its superiority over traditional methods is 

demonstrated by its ease of use, speed, cost-effectiveness, and ability to automate measurements 

of repetitive tasks.  Moreover, their ability to conduct analyses quickly and efficiently makes them 

valuable tools for both online and in-situ detection, which is advantageous from industrial 



 

3 

 

perspective. 

Some of the reviews have discussed these methods applications for meat assessments. According 

to the fact, these papers have covered various aspects of applications like quality and safety of 

meat. However, a comprehensive review on the recent applications of spectroscopic and spectral 

imaging techniques for exclusively minced meat and safety of minced meat is lacking. 

Furthermore, the newest developments of AI including wavelength selection algorithms and deep 

learning is also discussed in the present review. 

The review explores the theoretical foundation and contemporary uses of these emerging methods, 

along with their distinguishing features and also prospects for future advancements. The present 

review covers done researches from 2020 until now, as far as we know a comprehensive review in 

this range of years has not published. The present review discusses exact researches done on 

minced meat, unlike other researches.  
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2. Spectroscopic methods 
2.1. NIR spectroscopy 

The division of the infrared region in the electromagnetic spectrum includes near-, mid-, and far- 

infrared (Stark, Luchter, & Margoshes, 1986). Utilizing spectra information combined with 

statistical algorithms, the NIRs technique has been widely and extensively reported as one of the 

top optical methods for monitoring meat characteristics. 

Near Infrared (NIR) spectroscopy is a fast, nondestructive and highly sensitive method, which 

eliminates the need for sample preparation and gives qualitative and quantitative information about 

chemical compositions of sample (Cen & He, 2007; Leng et al., 2020). The absorption of specific 

frequencies from the light source by each sample in NIR spectroscopy initiates the occurrence of 

overtones and vibrational changes within molecules bands, which are basically consisted of CH, 

OH, CO, and NH groups (Kazemi, Mahmoudi, Veladi, Javanmard, et al., 2022). Thus, the NIR 

spectrum is formed when molecular vibration transitions occur, crossing from a ground state to a 

state of higher energy. 

In general, NIR spectroscopy has three modes of operation. Reflectance, transmission, and 

absorbance. Transmission mode can be utilized for detection of transparent liquid like water 

content and fecal or rumen contamination in minced meat samples (Dixit et al., 2017). Reflectance 

mode is the most common mode in meat samples and can be used for detection of adulteration and 

chemical compositions of minced meat (Dixit et al., 2017). The NIR system encompasses several 

key components, including an illuminator, a spectrometer for selecting wavelengths, a sample 

holder, a photoelectric sensor for evaluating light intensity and converting it into electrical signals, 

and a computer. After being illuminated by the light source, the sample reflects, transmits, or 

diffuses its rays which are then detected by an interferometric system. Ultimately, for additional 

analysis, the collected data from the NIR spectrum is sent to a computer by the detector. 

This technique has its own advantages and disadvantages. This technique’s main advantage is that 

it is non-destructive and does not require sample preparation. Another merit of NIR spectroscopy 

is its capability to conduct reflectance measurements, thus making it a feasible choice for 

measuring inhomogeneous samples (Dixit et al., 2017). In addition, with its unique capability to 

utilize a light-fiber probe and separate the sampling position from the spectrometer, NIR emerges 

as the most flexible optical technology, perfectly suited for online process monitoring. 

A drawback of NIR is that its spectrum is affected by interference from the background, including 

noise and overlapping bands. This leads to redundant variables and a high degree of collinearity. 

Furthermore, when recording the reflection spectrum, different light scattering phenomena occur 

as a result of numerous absorption bands overlapping. This leads to the complexity of the spectral 

information, and lacks of precise structural composition requires analysis of spectral data. (Y. Guo, 

Ni, & Kokot, 2016). Therefore, the use of some multivariate analysis is essential for extracting 

chemically significant information from NIR spectra and create calibration models that connect 

spectral features with the quality and safety parameters of samples. 

Some researches have been done to explore meat authentication which majority of these studies 

were done in 2020. For example NIR spectroscopy in the range of 12.500-5400 cm-1  was applied 
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to detect pork and duck meat in minced beef. In this study, Discriminant Analysis (DA) and Partial 

Least Square (PLS) models with various wavelength selection and preprocessing techniques were 

applied. DA model with selected wavelength and without preprocessing methods had the best 

performance with 100% and 91.5% for binary and ternary dataset, respectively (Leng et al., 2020). 

In another research, the capability of NIR spectroscopy technique for authentication of turkey meat 

was investigated by Barbin and coworkers in 2020. The spectral data within the 400 to 2500 nm 

range was collected and analyzed for both raw materials and prepared turkey items, with the goal 

of using it for quality assurance and verification purposes. PCA and linear discriminant analysis 

(LDA) models were employed to explore the classification of samples and presented acceptable 

results (Barbin, Badaro, Honorato, Ida, & Shimokomaki, 2020). Similarly in another study, 

visible/near-infrared (VIS/NIR) reflectance spectroscopy accompanied with multivariate methods 

were applied to detect adulteration in minced beef. Deep Convolution Neural Network (DCNN) 

and PCA models identified the type of adulteration with accuracy of over 99%. In prediction of 

adulteration levels, Random Forest (RF) model with selected wavelengths had the best results for 

beef adulterated with pork, and Coefficient of Determination of Prediction (R2
p) and Root Mean 

Square Error of Prediction RMSEP were 0.973 and 2.145, respectively (Weng et al., 2020). In 

another research, the evaluation of capability of a portable near-infrared (NIR) spectrometer to 

detect adulterants in ground meat was explored.  For binary mixtures, R2
c and R2

p values were 

between 0.78 and 0.99. Optimal results were obtained when predicting chicken content in beef 

mixtures (R2
c = 0.98; R2

p = 0.99; RMSEC = 4.5 wt%; RMSEP = 3.5 wt%; Limit of Detection 

(LOD) = 3.4 wt.%, Limit of quantification (LOQ) = 11.2 wt%).  For ternary mixtures, analytical 

outcomes were acceptable only for predicting beef content with the following values: R2
c = 0.98, 

R2
p = 0.93, RMSEC = 3.6 wt.%, RMSEP = 4.7 wt. %, LOD = 4.7 wt.%. and LOQ 15.7% by weight 

(Silva et al., 2020). In another study, a portable VIS-NIR spectrometer (400-1000 nm) and a 

portable NIR spectrometer (900-1700 nm) were used to distinguish between halal meat types and 

pork as non-halal meat, and also to distinguish between whole meat and pork. For the application 

of differentiating between halal and non-halal meat types, the utilized one-class classification 

(OCC) approach, particularly with the employment of VIS-NIR sensors achieved to the 

classification rate of 95-100% accuracy (Dashti et al., 2021). In a recent study, the adulteration of 

chicken meat and fat in lamb was explored with VIS/NIR spectroscopy and multivariate methods. 

Various preprocessing techniques were applied to remove unwanted information from spectral 

data. PCA model as unsupervised and Support Vector Machine (SVM) and Soft Independent 

Modeling Class Analogies (SIMCA) as supervised models were employed to detect adulteration 

in nine and three class datasets. SVM had outcomes of 56.15% and 80.70% for classification of 

nine and three class datasets (Kazemi, Mahmoudi, Veladi, & Javanmard, 2022). Also, another 

study by the same research group, reported the classification of pure lamb from adulterated lamb 

with fat with 5%, 10%, 15%, and 20% (w/w) adulteration levels. Linear Discriminant Analysis 

(LDA) model with Savitzky-Golay smoothing preprocessing had results of 100% and 86.2% 

accuracy for two and five class datasets (Kazemi, Mahmoudi, Veladi, Javanmard, et al., 2022). The 

2D conventional neural network (CNN) and sized-adaptive online NIRS data were used in the 

study by Bai et al, to classify minced samples of pure mutton, pork, and duck, as well as adulterated 

mutton with pork and duck. According to the results, spectral information significantly affected 

the model's accuracy; for the same validation set, the maximum difference was 12.06%. For all 
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datasets, the accuracy of the CNN model with per-direction average spectral information, Extreme 

Learning Machine (ELM) classifier, and 7 × 7 convolution kernel was above 99.56% (Bai et al., 

2022). 

Another research done by focused on testing the possibility of utilizing the fat portion as an 

indicator of authenticity by NIR spectroscopy. Models for the target class were created using the 

Data Driven version of Soft Independent Modelling of Class Analogy (DD-SIMCA), following 

multivariate exploration. In both calibration and validation, the use of Standard Normal Variate 

SNV pre-treated data along with 4 PCs achieved outstanding results, yielding a sensitivity and 

specificity of 100% (Totaro et al., 2023).  

In another study conducted by Hoffman et al, the evaluation of the performance of portable Near 

Infrared (NIR) spectroscopy to identify binary mixtures of lamb, emu, camel, and beef sourced 

was explored. The NIR spectra of the meat mixtures were analyzed using principal component 

analysis (PCA) and partial least squares discriminant analysis (PLS-DA). The cross-validation 

coefficient of determination (R2
cv) obtained for determining the proportion of species in binary 

mixtures was above 90%, and the standard error of cross-validation (SECV) ranged from 12.6 to 

15% w/w (Hoffman et al., 2023). 

Two approaches combining deep learning and two-dimensional correlation spectroscopy (2DCOS) 

method and Partial Least Square-Discriminant Analysis PLS-DA model have been used to analyze 

mutton adulteration in beef (L. Wang et al., 2024). Analyzing the effects of different proportions 

of mixing chicken, duck, pork with beef or mutton through synchronized 2DCOS images reveals 

different patterns of chemical information changes in spectra under different adulteration 

scenarios. ResNet's deep learning method can achieve high accuracy (100%) models and has the 

advantage of effectively extracting 2DCOS feature information.  Meanwhile, the accuracy range 

of the PLS-DA model test set was 32.97% to 50.64, depending on whether the raw or preprocessed 

spectral data matrix was used. 

 

2.2. Fourier Transform Infrared (FTIR) spectroscopy: 

Among spectroscopy techniques, FTIR spectroscopy is known as a fast, simple, and economical 

technique with least sample preparation. In comparison to traditional infrared techniques, this 

fingerprinting method offers more benefits including ability to detect components of small size 

samples, high precision and accuracy, data collection ability in controlled temperatures and 

pressures (Deniz et al., 2018). In FTIR spectroscopy, the interference between two IR beams is 

used to get signal (interferogram), which is based on difference in path length of two beams (Stuart, 

2004). The beam splitter receives an incident beam of light that has been collimated from an 

external polychromatic infrared radiation source. A portion of it is reflected to mobile mirror while 

another part is transferred to the stationary mirror. The returning beams from mirrors retrace their 

path and return to the beam splitter and then interfere. Because of interfere, the intensity of each 

beam returning to the source is different and depends on difference in the path of the beam. This 

process is done by a Michelson interferometer. The Michelson interferometer is a device that splits 

an incident light beam in to two perpendicular paths using a beam splitter. Fig.1. displays the 
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Michelson interferometer in its most basic configuration. The interference is created when two 

resultant beams are recombined after a path difference. A photodetector can measure the emergent 

beam’s intensity as a function of the path difference, and the path difference can be controlled and 

modified (Banerjee). The produced signal then is transformed to frequencies that form a signal by 

Fourier transform algorithms. FTIR spectroscopy technique can be applied to acquire spectral data 

from solid, liquid, or gas (Chai et al., 2020). In order to prepare solid materials to light beam of 

spectrophotometer, they can be mixed with potassium bromide (KBr) and subsequently pressed to 

form a small disc. One of the main problems of using this material is the low reproducibility of 

prepared samples due to some conditions like utilized ratio and homogeneousness required to be 

the same for all samples. Nowadays, Attenuated Total Reflectance (ATR) FTIR has solved this 

problem which does not require addition of KBr and needs small volume of sample. It also allows 

for rapid analysis. In spite of some practical applications of FTIR spectroscopy particularly in food 

safety issues, there are some industrial challenges of this technique like the interpretation of FTIR 

spectra especially for complicated samples like polysaccharides can be difficult (T. Hong, Yin, 

Nie, & Xie, 2021) and sample preparation in this technique can be time-consuming and crucial 

step. 

In a study by Mabood et al, FT-NIR spectrophotometer combined with PCA, PLS-DA, and PLSR 

models was applied to detect and quantify pork meat in other meats. In order to predict the amount 

of pork meat in other meats, PLSR model was used which had R2
cv = 0.977 and RMSECV = 1.08% 

(Mabood et al., 2020). In another application of ATR-FTIR spectroscopy for meat industry, 

Keshavarzi et al, applied this technique to explore adulteration of chicken in beef. PCA model was 

applied for two kinds of data: data without any preprocessing techniques in the whole range of 

spectra and preprocessed spectral data with focusing on 1700-1070 cm-1 range of spectra. 

Clustering of meat kinds with PCA model on data in transmission mode was successfully done. 

Furthermore, the preprocessed ATR_FTIR spectrum was used to prepare PLSR and Artificial 

Neural Network (ANN) models for prediction of adulteration amounts. ANN model outperformed 

with R2 of 0.999 for prediction dataset (Keshavarzi, Barzegari Banadkoki, Faizi, Zolghadri, & 

Shirazi, 2020). In the same year, the research group of Candogan investigated discrimination of 

pork, horse or donkey meat in beef. Hierarchical Cluster Analysis (HCA) in the region of 1480-

1425 cm-1 separated all pure beef, pure donkey meat and adulterated samples with sensitivity and 

specificity of 100% (CANDOĞAN, DENİZ, ALTUNTAŞ, Naşit, & Demiralp, 2020).  

In another study, the application of FTIR spectra combined with neural network classifier and 

different dimensionality reduction techniques was investigated for classification of lamb fat. The 

feature selection algorithms showed better performance of classification on the dataset collected 

from dairy lamb carcasses from 89.70% with the full feature set to 91.80% and 93.89% for SVM 

and PCA, respectively (Alaiz-Rodriguez & Parnell, 2020). 

 Similarly, Siddiqui et al, explored application of FTIR spectroscopy for detection of adulteration 

of beef, chicken, and lamb in lard. PCA model could separate samples with using three principal 

components. Beef and lamb samples for both adulterated and pure samples had the highest 

classification accuracy value of 85% with multiclass support vector machine (M-SVM), whereas 

chicken had the lowest value of 78% for each category (Siddiqui et al., 2021). In another 
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investigation, detection of presence of beef liver in beef patties was explored by FTIR 

spectroscopy. this technique was able to detect adulterated samples at 5% concentration (Abidin, 

Rosli, Bujang, Nordin, & Nizar, 2021). The feasibility of utilizing portable Fourier transform 

infrared spectroscopy (FTIR) in combination with multivariate classification techniques was 

examined by Dashti et al, to classify ground meat, lamb, chicken, and pork samples for the 

assessment of carnivorous speciation. Examinations were conducted employing Partial Least 

Squares Discriminant Analysis (PLS-DA) and Support Vector Machines (SVM) with Radial Basis 

Functions (RBF) serving as the kernel function.  SVM performs better than PLS-DA with an 

overall accuracy of 90% and 98% on ATR-FTIR and DR-FTIR datasets, respectively (Dashti et 

al., 2022).  

2.3. Raman spectroscopy 

Raman spectroscopy is another nondestructive spectroscopic technique which has proved its 

capability and includes some advantages like simple operation, no requirements for sample 

preparation, less interference by water, and ability to provide structural information of chemical 

elements (Bauer, Scheier, Eberle, & Schmidt, 2016; Khaled, Parrish, & Adedeji, 2021). This 

technique is based on inelastic scattering of light on the molecule level. When a sample is 

illuminated by an external laser beam, molecules are excited by photons and their vibrational 

energy levels are changed from ground state to unstable state. Then, excited level returns to initial 

level of energy by photon emission (Pchelkina, Chernukha, Fedulova, & Ilyin, 2022; Wenyang 

Zhang, Ma, & Sun, 2021).  There are two types of photon scattering based on difference between 

photons and molecules: elastic scattering and inelastic scattering (Butler et al., 2016). Elastic 

scattering, also known as Rayleigh scattering, happens when there is no energy exchange and the 

frequency of incident and scattered photons is the same. In contrast, in elastic or Raman scattering, 

a little amount of energy exchange happens between scattered photons and target molecules (Butler 

et al., 2016). The result of this exchange between sample and light is formation of virtual level. 

Then, due to the instability of formed virtual level, photons are scattered to a fairly stable level. 

There is no energy transfer between incident light and scattered light when photons come back to 

the initial level. This process of elastic collisions is called Rayleigh scattering (Pchelkina et al., 

2022). Majority of studies that have applied Raman spectroscopy for meat safety are before 2020, 

and due to the purpose of present review is exploring researches after 2020, we mentioned only 

two studies after 2020. Table.1. summarizes the research on the safety of minced beef performed 

by spectroscopic methods between 2020 and 2024. Robert et al, assessed the ability of Raman 

spectroscopy combined with three chemometric methods (PCA, PLS-DA, and SVM) to 

differentiate red meat samples (beef, lamb, and vension). The outcomes of linear and non-linear 

kernels of SVM model were 87% and 90%, respectively (Robert et al., 2021). Similarly, Saleem 

et al, applied Raman spectroscopy technique to differentiate goat, cow, and buffalo fat samples 

with 532-785 nm. They found that saturated fatty acids at Raman bands of 1060, 1080, and 1440 

cm-1 were relatively higher in buffalo fats (Saleem, Amin, & Irfan, 2021). 

In a study by Robert et al, the researchers investigated the use of Raman spectroscopy in 

combination with three chemical analysis techniques to distinguish between beef, lamb, and game 

samples. They used PLS-DA and SVM classification methods to develop a model for identifying 
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different types of meat, and PCA for exploratory purposes. The results showed that both linear and 

nonlinear kernel SVM models achieved high sensitivities and specificities, with sensitivities 

exceeding 87% and 90% respectively, and specificities exceeding 88% when tested against a 

separate set of samples. The PLS-DA model also demonstrated an accuracy of over 80% in 

correctly classifying each type of meat (Robert et al., 2021).  

In order to apply Raman spectroscopy in industrial cases some limitations, like interference of 

fluorescent with Raman signals which make it difficult to get accurate measurements and 

requirement of some specialized instrumentation should be solved. 
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3. Spectral imaging 
Electromagnetic spectrum includes a wide range of electromagnetic radiation, each with its own 

unique wavelengths and frequencies. These various types of waves, such as ultraviolet, visible, 

infrared, microwave, and radio waves, have distinct electromagnetic features like energy levels, 

propagation traits, and interactions with matter. This makes them necessary for research in 

different scientific fields. Visible light is an electromagnetic radiation that is visible by human eye 

and is limited in the range of wavelength between 380 and 780 nanometers. Many well-established 

methods based on vision and image processing are based on this particular spectral region 

(Reinhard et al., 2010). Recent developments in sensor technology have made it possible to acquire 

images at a wide scope of electromagnetic wavelengths. These approaches encompass 

hyperspectral and multi-spectral images, which cover a wider range of spectral bands than the 

conventional three bands employed in visible spectrum imaging. 

In order to get an increased level of spectral resolution, hyperspectral Imaging (HSI) and also 

Multispectral Imaging (MSI) methods take multitudinous images at compact and adjacent spectral 

bands encompassing a greater range of electromagnetic spectrum. These developed imaging 

techniques are known as imaging spectroscopy (ElMasry & Sun, 2010; Zahra et al., 2023). 

Spectral sensors are employed to gather information through images, with each image capturing a 

district portion of the electromagnetic spectrum called a spectral band. There are various ways to 

collect spectral data, each with its own strengths and weaknesses. The whiskbroom method is a 

technique that entails installing a line of detectors on a mobile platform; as the platform progresses, 

the detectors gather information from a small section of the ground, referred to as a swatch. The 

data that is utilized to generate a visual representation of the scene, where every individual pixel 

holds specific spectral information (Green et al., 1998; Zahra et al., 2023). The pushbroom 

technique is another approach that involves scanning a single axis and creating an image by either 

moving the camera or the objects being captured. To prevent spatial distortions in the collected 

data, the movement should be constant (Zahra et al., 2023). By switching out narrow bandpass 

filters in front of the camera lens or by utilizing electronically tunable filters, wavelength scanning 

techniques are possible to collect spectral image cubes. A typical NIR-HIS setup consists of a 

camera, a spectrometer, a detector, a light source, and a movable platform. A spectral image is 

typically represented as a cube, with the first two dimensions representing spatial information and 

the third dimension representing a collection of spectral images taken at various wavelengths. The 

challenge of performing hypercube analysis arises from the application of multivariate statistical 

methods (Cheng, Nicolai, & Sun, 2017). Moreover, the utilization of hypercube data in 

classification and prediction models frequently necessitates dimensionality reduction due to their 

large dimension and size. Preprocessing data from a hypercube often involves various techniques 

including interference correction, dimensionality reduction, and feature extraction (Oliveri et al., 

2014). Then, models are used to establish correlations, classifications, prediction, and validations. 

Table.2. presents the summary of researches for the application of spectral imaging for minced 

meat safety. 

Rady & Adedeji, explored the capability of hyperspectral imaging (400-1000nm) as a 

nondestructive approach to detect, differentiate, and quantify adulterants sourced from both plants 
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and animals in minced beef and pork. The meat and non-meat samples used in our study included 

beef (chuck rust), pork (Boston butt), chicken thigh, textured vegetable protein (TVP) (Red Mill, 

Milwaukie, Oregon, USA) that contains 50% soy protein, and wheat gluten (WG) (TruTex RS 65, 

MGP Atchison, Kansas, USA) with 75% protein.  Using the chosen wavelengths from the test set, 

the classification models produced optimal results with classification rates of 75-100% and 100% 

for pure and adulterated samples, respectively. Whereas, depending on the type of adulterants, the 

rates ranged from 83% to 100% (Rady & Adedeji, 2020). In another research, application of 

hyperspectral imaging (HSI) for detection of adulteration of leaf lard adulteration in minced pork 

was investigated. The average spectra extracted from regions of interest (ROIs) were subjected to 

distinct mathematical pre-processing. Then, quantitative calibration models (PCR, PLSR) with 

various wavelength selection algorithms (Principal Component (PC) loadings, two-dimensional 

correlation spectroscopy (2D-COS), competitive adaptive reweighted sampling (CARs), and 

Regression Coefficients (RC)) were applied. The best outcomes of PLSR model with RC 

wavelength selection algorithm were 0.98 and 4.87% for R2 and RMSEP, respectively (Jiang, 

Jiang, et al., 2020). Zhao et al, employed the combination of hyperspectral imaging and Gaussian 

distribution of regression coefficient (GD-RC) model to visually detect adulteration of minced 

chicken in minced beef. The binary GD-RC model performed better than the uniform GD-RC 

model.  The best technique had an average error (ARE) of 2.8%, a correlation coefficient (r) of 

0.9831, and a root mean square prediction error (RMSEP) of 0.0319 (Zhao et al., 2020). 

The combined usage of PLSR and NIR-HIS enabled the detection of minced pork contamination 

with minced pork jowl meat by collecting data between 400 and 1000 nm. The best performing 

model, with R2
p = 0.9549 and residual predicted deviation (RPD) = 4.54, is spectra preprocessed 

with standard normal variables (SNV), and with partial least squares regression (PLSR) models. 

Additionally, to precisely choose important wavelengths connected to adulteration identification, 

principal component (PC) loadings, two-dimensional correlation spectroscopy (2D-COS), and 

regression coefficients (RC) were applied and yielded acceptable results (Jiang, Cheng, & Shi, 

2020).  

 Similarly, in another research, the capability of hyperspectral reflectance spectroscopy in 

detection of minced beef adulteration was assessed. Random Forest (RF) model yielded the best 

accuracy of 96.87% in prediction set with selected wavelengths (B. Guo, Zhao, Weng, Yin, & 

Tang, 2020). Similarly, the potential of use of hyperspectral imaging (HSI) technique to identify 

any adulteration of offal in ground beef was investigated. PLSR models based on full spectra 

showed the best performance with R2
P of 0.98, RMSEP = 4.25%, and Ratio Performance Deviation 

(RPD) of 7.53 in prediction set (Jiang, Cheng, et al., 2020). 

Examining the potential of multivariate data analysis alongside HSI, the research done by Jiang et 

al, investigated the ability to distinguish between raw and cooked mutton rolls with substitutions 

of pork and duck rolls. The highest rate of 100% classification was achieved in all sets with the 

application of different models and preprocessing techniques, specifically through the use of the 

PLS-DA model developed by raw spectra (Jiang, Yang, & Shi, 2021). In another study, the use of 

hyperspectral imaging technology in conjunction with characteristic variable screening for the 

quick and nondestructive identification of adulterated fox meat in minced mutton was investigate. 
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When paired with the 2-dimensional correlation- SVR model, hyperspectral imaging can 

efficiently achieve quantitative detection of contaminated fox meat in minced mutton (Bai et al, 

2021). In other study, HSI in spectral range of 400-1000 nm accompanied with multivariate 

analysis and wavelength selection algorithms was applied to detect soybean protein powder (SPP) 

in ground beef. The final outcomes displayed that simplified PLSR model based on six selected 

wavelengths from PC loadings acquired Rp = 0.993, RPD = 8.45, and LOD of 0.74 (Jiang et al., 

2022). 

The visible/near infrared (400-1000nm) and short-wave near-infrared (900-1700 nm) HSI method 

was employed in another research to detect adulteration of duck meat in lamb. Different models, 

preprocessing and wavelength selection algorithms were applied and the best outcome was with 

SNV-SPA-PLSS model in short-wave near infrared band with prediction set (R2
p = 0.986, RMSEP 

= 0.058, RPD = 5.62) (Jing-yuan, Jun-qin, Mei, Xing-hai, & Ye-lin, 2022). 

 Similarly,  the effectiveness of visible-near infrared hyperspectral imaging (VIS-NIR-HSI) and 

shortwave infrared hyperspectral imaging (SWIR-HSI) accompanied with different classification 

and regression methods were reported for meat authentication by (Dashti et al., 2023). the obtained 

results proved that VIS-NIR-HSI technique outperformed SWIR-HSI. Combination of HSI and 

transfer learning was employed to detect starch in minced chicken meat (Yang et al., 2023). Two 

classification models were compared. Models were built on acquired hyperspectral data from 

samples. Additionally, a classification model based on the GoogleNet network pretrained on the 

ImageNet collection was developed to detect starch in minced chicken meat. The model based on 

the GoogleNet network showed a better classification accuracy, up to 98.6%, according to the 

results. 

A different study conducted by Achata and colleagues in 2023 examined the use of Hyperspectral 

imaging (HSI) within a specific spectral range, combined with multivariate analysis. The purpose 

of this study was to determine if it is possible to create a universal model for detecting the presence 

of other meats in ground meat samples. To predict the quantity of Minced Beef meat (MBM) in 

scanned samples, various approaches including different spectral pre-treatments, the partial least 

squares regression (PLSR) methodology, the ensemble Monte Carlo variable selection method 

(EMCVS), and combinations of any two of these methods were examined. The researchers used 

data from MBM contaminated with chicken and turkey meats to create a beef prediction model. 

They tested the accuracy of the model by using data from MBM contaminated with pork meat at 

various levels of adulteration. They used a combination of the asymmetric least squares and 

standard normal variate techniques to analyze the reflectance spectra. The results showed good 

prediction accuracy with 23 specific wavelengths, achieving an R2
p value of 0.96, an RMSEP of 

2.9%, and an RPD of 5.4 (Achata et al., 2023).  

The study conducted by Cruz-Tirado et al, utilized the Portable NIR Spectrometer and NIR-HIS 

methods, which do not involve the use of chemicals, to identify the presence of pork, chicken, and 

beef in alpaca meat at varying concentrations (0-50% w/w). The samples were classified into pure 

and non-pure alpaca meat using Principal Component Analysis (PCA), with both instruments 

providing spectral data. To authenticate pure alpaca meat, a single-class data-driven soft 

independent class analogy (DD-SIMCA) model was developed and validated. The DD-SIMCA 
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model, using spectra obtained from both instruments, achieved perfect sensitivity and specificity 

(100%) when applied to an external sample set. Moreover, the NIR-HIS-based partial least squares 

regression (PLSR) outperformed the portable NIR spectrometer in accurately predicting 

contaminant concentrations in alpaca meat (Cruz-Tirado et al., 2024).  

4. Artificial Intelligence 
Data analysis is the keystone that connects the desired sample characteristics to the NIR absorption 

or transmittance measurements. The primary objective is to enhance both the reliability and 

accuracy of analytical results. For instance, the combination of spectral data and pattern 

recognition techniques can effectively address authentication issues in commodities like 

pharmaceutical, food, and cosmetics (Chophi, Sharma, Jossan, & Singh, 2021; Ignat, De Falco, 

Berger-Tal, Rachmilevitch, & Karnieli, 2021; Meza Ramirez, Greenop, Ashton, & Rehman, 2021).  

With advancements in artificial intelligence, big data, and cloud computing, new ideas, 

approaches, and strategies are constantly revitalizing the field of statistical analysis techniques. 

Fig.2. illustrates how machine learning algorithms convert the NIR absorption data to the 

necessary outputs. In the realm of machine learning, algorithms include both training and testing 

phases. Machine learning algorithms use the acquired outcomes as outputs and the light absorption 

values as inputs during the training phase. In the test step, they predict the intended result based 

on the supplied light absorption values. 

4.1. Spectral preprocessing 

In addition to the advancement of modeling algorithms, preprocessing algorithms have also made 

progress. This step is essential in analyzing spectral data as it deals with uninformative spectra 

caused by light scattering or system noise. In NIR spectroscopy, two commonly used preprocessing 

methods are spectral normalization and spectral derivatives. Spectral normalization corrects 

scattering impacts, while spectral derivatives handle peak overlap and baseline drifts (López-

Maestresalas et al., 2019; Rinnan, Van Den Berg, & Engelsen, 2009). 

The elimination of multiplicative effects in spectral data is challenging, so there is significant 

interest in developing processing methods to address this issue. To a certain extent, Standard 

Normal Variate (SNV) along with Multiplicative Scatter Correction (MSC) and extended MSC 

(EMSC) are common employed techniques for eliminating multiplicative effects, thereby 

minimizing the impact of solid particle size (light scattering and variance in the effective path 

length) or scattering effect on spectral data (H.-P. Wang et al., 2022). Furthermore, recently some 

improved algorithms have been applied. For example, to enhance the SNV preprocessing 

efficiency, Bi et al, partitioned the NIR spectra in to equally sized and separated sections, and 

processed with SNV preprocessing for each subinterval (Bi et al., 2016). The outcomes 

demonstrated that this particular local SNV preprocessing method exhibited remarkable efficacy, 

surpassing the effectiveness of global SNV. In order to account for the varying effects of physical 

factors on spectral variables, a normalization algorithm called Variable Sorting was created for 

Normalization (VSN). Before conducting the SNV algorithm, this algorithm assigns varying 

weights to different wavelength variables. (Rabatel, Marini, Walczak, & Roger, 2020). Denoising 

refers to the process of improving the signal-to-noise ratio (SNR) by eliminating or reducing 
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random errors that are added to the raw spectral signals. The most used algorithms for denoising 

include Wavelet Transform (WT), Fourier Transform (FT), Savitzky-Golay (SG), and moving-

average. elimination of noise through these methods can be highly effective. Nevertheless, there 

is the risk of signal distortion, particularly when dealing with sharp spectra like raman, NMR, and 

X-ray diffraction. 

The proposal of the fact that distorted peak denoising can be attributed to the insufficient sampling, 

which is a result of frequencies which are being scattered was explored by (Yao, Su, Yao, & Huang, 

2021). In order to solve this problem, they suggested an operation method with yield adjustments 

based on a four-step approach. This method begins by determining the levels of signal and noise 

in the raw data. It subsequently adjusts the sampling density in areas characterized by high signal 

levels and improves them using linear interpretation. Next, it performs a smoothing operation to 

reshape the profile and finally, restores the original shape of the deformed profile. The proposed 

method demonstrated superior denoising performance when compared to S-G and WT denoising 

based on the experimental results. 

The application of derivative preprocessing techniques, such as S-G derivation, enables efficient 

elimination of baseline and background interference while also facilitating the resolution of 

overlapping signals and enhancing spectral resolution and instrumental sensitivity. However, this 

method frequently introduces unwanted effects in to the frequencies which leads to a low signal-

to-noise ratio (SNR). Furthermore, the noise becomes more prominent as the derivative order 

increases. As a result of this, the WT is commonly used for the computation of high derivatives 

such as the third or fourth order (Shao, Cui, Wang, & Cai, 2019). Additionally, the singular 

perturbation Spectra Estimator (SPSE) developed by Li et al is regarded as a reliable technique for 

calculating higher-order derivatives (Li, Wang, Lv, Ma, & Yang, 2015). In contrast to the derivative 

spectrum with integer orders, the fractional-order derivative spectrum has a greater ability to 

accurately depict changes in spectral details according to the derivative order while also addressing 

the conflict between spectral resolution and signal intensity (Y. Hong et al., 2018; Hu et al., 2021). 

Zheng et al applied their novel fractional-Order Savitzky-Golay Derivative (FOSGD) algorithm to 

preprocess NIR spectral data as an example. They found that this algorithm resulted in improved 

model performance compared to using the integral order SG derivative (Zheng, Zhang, Tong, Yao, 

& Du, 2015).  

4.2. Feature selection 

Due to the issue of including irrelevant or redundant information in spectral data which lead to 

noise and decreased model performance, application of variable selection is significant in spectral 

analysis to identify the most informative features. The goal of feature selection is to identify the 

most reliable, relevant, and unique set of features from a feature vector. Feature selection 

algorithms are capable of effectively reducing the size of spectral data and eliminating any 

duplicated information from the spectrum. Feature selection techniques in machine learning are 

divided in to three groups: filter methods, wrapper methods, and embedded methods (H.-P. Wang 

et al., 2022). The primary difference of the mentioned techniques is the utilized learning algorithm. 

The variables in the filter method are assessed individually, disregarding any interdependence 

among them. Therefore, filter-based approaches ensure that the selected features do not overfit and 
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are ranked based on their importance. The most applied techniques involve correlation coefficient 

method and analysis of variance (ANOVA) method. By considering the correlation between 

variables, the wrapper method determines the best combination based on how it affects the model 

performance. Therefore, wrapper-based characteristics have a tendency to overfit, and the majority 

of feature selection methods in NIR employ this approach. (Wenwen Zhang, Kasun, Wang, Zheng, 

& Lin, 2022). From variable selection algorithms of this method, interval PLS (iPLS), successive 

projections algorithm PLS (SPA-PLS), and genetic algorithm PLS (GA-PLS) can be mentioned. 

The inclusion of embedded approaches involves the utilization of a model learning factor that 

assesses the ability of chosen features to generalize. The strategy that is most commonly adopted 

in this regard is to add regular terms, such as the algorithm for least absolute shrinkage and 

selection operator, in order to decrease model’s complexity (H.-P. Wang et al., 2022; K. Wang, 

Bian, Tan, Wang, & Li, 2021). Random Forest (RF) variable selection is one of the most used 

popular algorithms in embedded method. 

4.3. Modelling 
The literature describes two main types of machine learning architectures for NIR: traditional 

methods and deep network architectures. Traditional methods involve selecting valuable features 

from the input data through feature learning and then applying traditional machine learning 

algorithms. These techniques application in spectroscopy which is called chemometrics is able to 

predict quantitative and qualitative features. 

4.3.1. Multivariate classification models: 

One-class classification (OCC) techniques focus on modeling a single class independently of 

others, emphasizing the similarities within that class rather than the differences between classes. 

A widely used OCC technique in chemometrics is Soft Independent Modelling of Class Analogy 

(SIMCA) (Wold & Sjöström, 1977). SIMCA uses Principal Component Analysis (PCA) on the 

training data of the target class to create a defined acceptance region in multivariate space. A 

sample is assigned to a class if its residual distance falls within the statistical limit for that class. 

Interestingly, a sample can be assigned to more than one class if it meets the criteria for multiple 

classes (Kazemi, Mahmoudi, Veladi, Javanmard, et al., 2022). In simpler terms, PCA helps analyze 

the samples of each class and build classification models. If an unknown sample resembles the 

calibration samples, it will be classified as a member of that class (Basati, Jamshidi, Rasekh, & 

Abbaspour-Gilandeh, 2018). In contrast, two or multi-class classifiers, known as supervised 

discriminant methods, are used to establish boundaries between different classes. The most 

traditional method is Linear Discriminant Analysis (LDA), which identifies linear surfaces 

(hyperplanes) that effectively separate samples from different categories. This is done based on 

the relative positions of the groups' centroids and the within-class variance/covariance (Brereton 

et al., 2018). For LDA to work, the number of training objects must be greater than the number of 

input variables. Therefore, it is often necessary to reduce the number of variables using PCA before 

conducting statistical analysis. 

Another supervised method is Partial Least Square-Discriminant Analysis (PLS-DA), which aims 

to maximize the separation between classes while minimizing variability within each class by 
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creating linear decision boundaries (Xu, Xia, Min, & Xiong, 2022). PLS-DA generates new 

variables, known as Latent Variables (LVs), through linear combinations of the original variables. 

These LVs maximize the covariance between the predictor matrix (X) and the response matrix (Y). 

The Y matrix is binary, with as many rows as X and as many columns as there are groups in the 

dataset. Each column represents group membership using 0/1 variables, where a value of 1 

indicates membership in a group, and 0 indicates otherwise (Næs, Isaksson, Fearn, & Davies, 

2002). Support Vector Machine classification (SVMc) is another powerful technique based on 

statistical learning. It works by mapping the original data space into a higher-dimensional feature 

space using kernel functions, with the goal of finding the best separation between different classes 

in the training set through a hyperplane. The decision function of SVM is determined by a small 

number of support vectors located on the margins of the hyperplane. The success of an SVM model 

largely depends on the appropriate selection of kernel functions (De Girolamo et al., 2020).  

4.3.2. Multivariate calibration models 

Through the utilization of a multivariate calibration strategy, the combination of NIR data and 

reference values obtained from chemical analysis, enables the creation of calibration models with 

predictive capabilities and quantifiable properties for analogous sets of NIR data. The most 

commonly applied multivariate calibration models for NIR meat analysis are Principal Component 

Regression (PCR), Multiple Linear Regression (MLR), and Partial Least Square Regression 

(PLSR), (Dixit et al., 2017). In MLR technique, concentration is linked to absorbance through 

considering the concentrations of target analytes and other elements that contribute to the overall 

signal (Blanco & Villarroya, 2002). As an extension of PCA and an inverse calibration technique, 

PCR is similar to MLR in that it uses PCs from PCA as variables in an MLR model. The first step 

involves conducting PCA on the calibration data to produce PCA scores and loadings which is then 

followed by MLR (Gemperline, 2006). The mathematical model employed by PCR and PLSR is 

indistinguishable, except for how they handle data compression. While PCR focuses only on 

spectral information, PLS incorporates both spectral and concentration data. Latent Variables 

(LVs) are the compressed variables that are obtained in PLSR. By utilizing PLSR, the spectral data 

is mathematically correlated to a matrix of property of interest (chemical or physical properties), 

along with any other significant spectral components that interfere with the spectrum. (ElMasry, 

Sun, & Allen, 2012; Hemmateenejad, Akhond, & Samari, 2007).  

 

4.3.3. Deep learning 

As it was mentioned, there are two classifications for ML algorithms: traditional machine learning 

methods and deep network architectures. Unlike traditional machine learning methods, deep 

network architectures have multiple hidden layers like AlexNet and GoogleNet. Deep network 

architectures employ raw features unlike traditional machine learning methods that require an 

expert to engineer appropriate features. 

NIR data has been effectively modeled by combining classical chemometric approaches, 

predominantly PCA and PLS-based techniques, with knowledge-driven spectroscopic 

preprocessing. For many years, ANNs have been utilized in the chemometric field. Nevertheless, 
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there exists a distinction between the conventional ANNs and more recently developed deep NNs. 

In order to input data in to ANNs, which are like most Machine Learning (ML) algorithms, pre-

extracted features extraction automatically, offering specialized proxies for spectroscopic 

preprocessing (fig.3 b). DL can also include a larger number of layers than ANNs. Training can 

involve up to hundreds of layers with millions of parameters. This is possible due to the availability 

of enhanced computational power, graphic processing units (GPUs), refined regularization 

techniques and advanced model optimization approaches make this attainable (Mishra et al., 2022).  

5. Challenges and future outlook 
While spectral- and image acquisition techniques have advanced quickly, they still have some 

challenges when implemented in industrial environments. Firstly, the initial creation of certain 

models may require a significant investment of both time and money due to the lengthy calibration 

process. Moreover, the gathering of data is impacted by various acquisition parameters like 

scanning times and sample to detector distance, as well as environmental factors such as ambient 

temperature, humidity, illumination conditions, and sample temperature. 

However, most testing techniques use a single detection method for a given detection index and 

provide acceptable predictive results, thus providing multiple pieces of information for a 

comprehensive evaluation of the sample is required in the future (Xiong, Sun, Pu, Gao, & Dai, 

2017). Consequently, it becomes essential to integrate multiple detection methods and indicators, 

as well as utilize data fusion, for exploring the comprehensive evaluation technique for meat safety. 

At this moment, the meat industry requires an online/real-time system for quickly verifying the 

authenticity of meat products. Despite some initial success, further research is needed to implement 

online systems effectively. Implementing an online/real-time detection system for the rapid 

authentication of meat products would indeed have several benefits, but it also comes with its own 

set of drawbacks: Developing and implementing such a system can be expensive. There are costs 

associated with research and development, equipment procurement, installation, maintenance, and 

ongoing operational expenses. These costs may be prohibitive for some companies, particularly 

smaller businesses in the meat industry. In addition, creating a reliable online detection system for 

meat authentication requires advanced technology and expertise in areas such as sensor 

technology, data analysis, and machine learning. The complexity of integrating these components 

into a seamless and effective system can pose challenges. Furthermore, achieving high levels of 

accuracy in detecting and authenticating meat products in real-time can be difficult. Factors such 

as variations in meat composition, processing methods, and environmental conditions can affect 

the performance of the detection system. Ensuring consistently accurate results is essential for 

maintaining consumer trust and regulatory compliance. Another weak point is Continuous 

maintenance and calibration of the detection system are necessary to ensure its ongoing reliability 

and accuracy. This requires dedicated resources and expertise to address issues such as sensor 

degradation, software updates, and changes in production practices. And finally, introducing new 

technology into established meat industry practices may face resistance from stakeholders who are 

accustomed to traditional methods of authentication. Overcoming this resistance and fostering 

adoption of the new detection system can be a significant challenge. 

Addressing these drawbacks requires careful planning, investment, and collaboration between 
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industry stakeholders, technology developers, and regulatory authorities. Despite the challenges, 

the potential benefits of an online/real-time detection system for meat authentication make it a 

worthwhile endeavor for improving food safety and consumer confidence in the industry. 

Despite these drawbacks, these nondestructive spectroscopy and imaging techniques may become 

more widely used in the future.  These methods will continue to evolve as instrument technology 

improves, the meat industry urgently requires a real-time online system that can quickly 

authenticate meat products. The development of high-speed computers with sufficient storage 

capacity and appropriate chemical assays has made this possible. Implementing these fast and non-

destructive systems could greatly impact the profitability of the meat industry and may become 

the leading trend in the future. Even though initial efforts yielded some success, additional 

investigation is needed to properly implement online systems. 

 

6. Conclusion 
This review provides a comprehensive review of how spectral methods and techniques have been 

used to swiftly assess the safety of ground meat illuminating the drawbacks of conventional 

methodologies and underscoring the necessity for enhanced, industry-specific alternatives. The 

present review paper concentrates on recently done research about the safety of minced meat using 

some spectral techniques and AI algorithms. Some new issues in application of AI, including 

feature selection and deep learning, were also discussed. The promising results acquired have 

highlighted the vast potential for implementation in the meat industry. In conclusion, these 

techniques could potentially be used in meat as a non-destructive security detection tool.  Despite 

the current limitations, there are still various improvements and research possibilities for 

successful commercialization, especially for his HSI-based systems. 
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Figures and tables captions: 

Fig.1. Schematic diagram of the Michelson interferometer (Banerjee).  

Fig.2. Architecture of machine learning for NIR spectroscopy  (Wenwen Zhang et al., 2022) 

Fig. 3. (A) Classical ANN for data modelling, and (B) DL convolutional neural network (CNN) 

approach, which includes joint feature extraction and model building (Mishra et al., 2022). 

  Table.1. application of spectroscopic methods for meat safety                                            

Table.2. the spectral imaging application for ground meat safety                                        
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Table.1: 

 

technique Investigated parameter chemometrics results references 
NIR Adulteration: 

Pork and duck meat in minced 

beef 

DA 
PLSR 

Rp=95.80% 
RMSEP=7.27 

(Leng et al., 2020) 

NIR Discrimination: 

Turkey cuts 

PCA 

LDA 

Accuracy=80% (Barbin et al., 2020) 

VIS/NIR Adulteration: 

Pork and beef heart in minced 

beef 

SVM 

RF 

PLSR 
DCNN 

R2
p=0.96 

RMSEP=2.75 

(Weng et al., 2020) 

NIR Adulteration: 

Chicken/beef; 

beef/pork;pork/chicken 
 

PLS 

SVR 

R2
c=0.78 

R2
p=0.99 

(Silva et al., 2020) 

VIS/NIR and 

NIR 

Distinguish: 

Halal meat vs. pork 

SVM 

PLS-DA 

CCR=95-100% (Dashti et al., 2021) 

VIS/NIR Adulteration: 
Chicken and fat in lamb 

PCA 
SVM 

SIMCA 

Accuracy= 
80.70% 

(Kazemi, Mahmoudi, Veladi, & 
Javanmard, 2022) 

VIS/NIR Adulteration: 
Fat in lamb 

PCA 
LDA 

Accuracy= 100% (Kazemi, Mahmoudi, Veladi, 
Javanmard, et al., 2022) 

NIR Classification: 

Mutton, pork, and duck 

CNN Accuracy= 

99.56% 

(Bai et al., 2022) 

NIR Authenticity= 
Fat portion 

DD-SIMCA Sensitivity=100% (Totaro et al., 2023) 

NIR adulteration: 

adulterants of exotic meat 
species 

PCA 

PLS-DA 

R2
cv= 90% 

SECV=12.6-15% 

(Hoffman et al., 2023) 

2DCOS Adulteration: 

Mutton in beef 

Resnet deep 

learning 

PLS-DA 

Accuracy=100% (L. Wang et al., 2024) 

FTIR Adulteration: 

Pork meat in other meats 

PCA 

PLS-DA 

R2=0.97 

RMSECV=1.08% 

(Mabood et al., 2020) 

FTIR Adulteration: 

Chicken in beef 

PCA 

PLSR 
ANN 

R2=0.99 (Keshavarzi et al., 2020) 

FTIR Discrimination: 

Pork, horse, and donkey in beef 

HCA Sensitivity=100% (CANDOĞAN et al., 2020) 

FTIR Classification of lamb fat PCA 
SVM 

PLS 

Accuracy=85.60% (Alaiz-Rodriguez & Parnell, 2020) 

FTIR Adulteration: 
Beef, chicken, lamb in lard 

M-SVM 
PCA 

Accuracy=85% (Siddiqui et al., 2021) 

FTIR Adulteration: 

Beef liver in beef patties 

- - (Abidin et al., 2021) 

FTIR Classification: 
Lamb, chicken, and pork 

PLS-DA 
SVM 

Accuracy=98% (Dashti et al., 2022) 

Raman Differentiation: 

Beef, lamb, vension 

PCA 

PLS-DA 

SVM 

Accuracy=90% (Robert et al., 2021) 

Raman Differentiation: 

Goat, cow, and buffalo fat 

PCA - (Saleem et al., 2021) 
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Table.2: 

 

 

application 
technique 

Spectral 

range 
model results reference 

Adulteration: 

Plant and animal-based adulterants in minced 
beef and pork 

HSI 400-1000nm 

SVM 

LDA 
PLS-DA 

Accuracy= 100% 
(Rady & Adedeji, 

2020) 

Adulteration: 

Leaf lard in minced pork 
HSI 400-1000nm 

PCR 

PLSR 

R2p = 0.98 

RMSEP = 4.87% 

(Jiang, Jiang, et al., 

2020) 

Adulteration: 
Minced chicken in minced beef 

HSI 380-1000nm GD-RC 
R=0.98 

RMSEP=0.03 
(Zhao et al., 2020) 

Adulteration: 

Minced pork jawl in minced pork 
NIR-HSI 400-1000nm PLSR 

R2p=0.95 

RPD=4.54 

(Jiang, Cheng, et al., 

2020) 

Adulteration: 
Adulterants in minced beef 

HSI 350-2500nm RF Accuracy=96.87% (B. Guo et al., 2020) 

Distinguish: 

Pork and duck rolls in mutton roll 
HSI 400-1000nm PLS-DA Accuracy=100% (Jiang et al., 2021) 

adulteration: 

SPP in ground beef 
HSI 400-1000nm PLSR 

Rp = 0.99 
LOD=0.74% 

RPD=8.45 

(Jiang et al., 2022) 

Adulteration; 

Duck meat in lamb 

VIS-NIR-
HSI 

SWIR-HSI 

 

900-1700nm 

400-1000nm 
PLSR 

R2p=0.98 

RMSEP=0.98 
RPD=5.62 

(Jing-yuan et al., 

2022) 

Authentication of meat samples 

VIS-NIR-
HSI 

SWIR-HSI 
 

400-1000nm 

1116-1670nm 

SVM 

ANN-
BPN 

Accuracy=96% (Dashti et al., 2023) 

Adulteration: 

Starch in minced chicken meat 
HSI 400-1000nm 

SVM 

CNN 
Accuracy=98.6% (Yang et al., 2023) 

Adulteration: 
Minced chicken and turkey and pork in 

minced beef meat 

HSI 400-1000nm PLSR 
R2p=0.96 

RMSEP=2.9% 

RPD=5.4 

(Achata et al., 2023) 

Adulteration of alpacha meat with pork, 

chicken, and beef 
NIR-HSI - 

DD-

SIMCA 

PLSR 

PCA 

Sensitivity=100% 
(Cruz-Tirado et al., 

2024) 

 


