نوع مقاله : مقاله پژوهشی فارسی

نویسندگان

1 گروه زیست فناوری مواد غذایی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان.

2 گروه مهندسی آب، دانشگاه علوم کشاورزی و منابع طبیعی گرگان.

3 گروه علوم و صنایع غذایی، موسسه غیر انتفاعی بهاران، گرگان، ایران.

چکیده

< p dir="RTL">مطالعه ویژگی‌های پروبیوتیکی و ضدقارچی باکتری‌های اسید لاکتیک جداشده از بستره‌های تخمیری که فلور میکروبی آن‌ها کمتر موردمطالعه قرار گرفته است جهت دستیابی به کشت‌های میکروبی پروبیوتیک و محافظت‌کننده از اهمیت به‌سزایی در صنایع تخمیری برخوردار است. در پژوهش حاضر، باکتری اسید لاکتیک غالب پس از تکرار فرایند مایه‌گیری از خمیرترش کینوا، جداسازی و سپس با توالی‌یابی محصولات PCR حاصل از تکثیر توالی هدف مشخص از ژن 16S rDNA آن شناسایی شد. در ادامه، قابلیت‌های پروبیوتیکی جدایه لاکتیکی، شامل مقاومت به اسید و صفرا، اثر ضدباکتریایی، ویژگی‌های خود و دگر اتصالی، حساسیت آنتی‌بیوتیکی و همولیز خون موردبررسی قرار گرفت. علاوه‌بر‌این، اثر بازدارنده جدایه لاکتیکی بر رشد Aspergillus niger نیز به‌روش کشت دو لایه بررسی شد. توالی‌یابی محصولات PCR منجر به شناسایی Enterococcus hirae به‌عنوان جدایه لاکتیکی غالب خمیرترش کینوا گردید. همچنین این جدایه لاکتیکی پس از تیمار متوالی اسید و صفرا از زنده‌مانی مناسبی برخوردار بود. علاوه‌براین، جدایه لاکتیکی بر Bacillus cereus نسبت به سایر عوامل باکتریایی غذازاد اثر بازدارنده بیشتری داشت و تأثیر بازدارندگی روماند خام جدایه لاکتیکی بر عوامل بیماری‌زا به شکل معنی‌داری (05/0P<) از تأثیر روماند خنثی‌شده آن بیشتر بود. E. hirae دارای قابلیت خوداتصالی معادل 71/54 درصد، فاقد قابلیت همولیز و دارای الگوی مقاومت آنتی‌بیوتیکی مناسبی بود. اثر ضدقارچی این جدایه لاکتیکی بر روی A. niger نیز موردتأیید قرار گرفت. با توجه به نتایج این پژوهش، جدایه لاکتیکی غالب خمیرترش کینوا از قابلیت مناسبی برای استفاده به‌عنوان کشت پروبیوتیک، محافظت‌کننده و یا همراه در صنایع تخمیری برخوردار بود. 

کلیدواژه‌ها

موضوعات

Abnous, K., Brooks, S.P., Kwan, J., Matias, F., Green-Johnson, J., Selinger, L.B., Thomas, M., & Kalmokoff, M. 2009. Diets enriched in oat bran or wheat bran temporally and differentially alter the composition of the fecal community of rats. The Journal of Nutrition, 139(11), 2024-2031.
Abriouel, H., Muñoz, M.D.C.C., Lerma, L.L., Montoro, B.P., Bockelmann, W., Pichner, R., Kabisch, J., Cho, G.S., Charles Franz, M.A.P.Gálvez, A., & Benomar N. 2015. New insights in antibiotic resistance of Lactobacillus species from fermented foods. Food Research International, 78, 465-481.
Abushelaibi, A., Al-Mahadin, S., El-Tarabily, K., Shah, N.P., & Ayyash, M. 2017. Characterization of potential probiotic lactic acid bacteria isolated from camel milk. LWT-Food Science and Technology, 79, 316-325.
Angmo, K., Kumari, A., & Bhalla, T.C. 2016. Probiotic characterization of lactic acid bacteria isolated from fermented foods and beverage of Ladakh. LWT-Food Science and Technology, 66, 428-435.
AOAC. 2005. Official methods of analysis (18 ed). Gaithersburg, MD: AOAC International.
Axel, C., Brosnan, B., Zannini, E., Peyer, L.C., Furey, A., Coffey, A., & Arendt, E.K. 2016. Antifungal activities of three different Lactobacillus species and their production of antifungal carboxylic acids in wheat sourdough. Applied Microbiology and Biotechnology, 100(4), 1701-1711.
Axel, C., Röcker, B., Brosnan, B., Zannini, E., Furey, A., Coffey, A., & Arendt, E.K. 2015. Application of Lactobacillus amylovorus DSM19280 in gluten-free sourdough bread to improve the microbial shelf life. Food Microbiology, 47, 36-44.
Axelsson, L.T., Chung, T.C., Dobrogosz, W.J., & Lindgren, S.E. 1989. Production of a broad spectrum antimicrobial substance by Lactobacillus reuteri. Microbial Ecology in Health and Disease, 2, 131–136.
Bernardeau, M, Vernoux, J.P, Henri Dubernet, S., & Guegen, M. 2008. Safety assessment of dairy microorganisms: The Lactobacillus genus. International Journal of Food Microbiology, 126, 278–285.
Campana, R., van Hemert, S., & Baffone, W. 2017. Strain-specific probiotic properties of lactic acid bacteria and their interference with human intestinal pathogens invasion. Gut Pathogens, 9(1), 12.
Casarotti, S.N., Carneiro, B.M., & Penna, A.L.B. 2014. Evaluation of the effect of supplementing fermented milk with quinoa flour on probiotic activity. Journal of Dairy Science, 97(10), 6027-6035.
Collado, M.C., Meriluoto, J., & Salminen, S. 2007. In vitro analysis of probiotic strain combinations to inhibit pathogen adhesion to human intestinal mucus. Food Research International, 40(5), 629-636.‏
Delgado, S., O''sullivan, E., Fitzgerald, G., & Mayo, B. 2007. Subtractive screening for probiotic properties of Lactobacillus species from the human gastrointestinal tract in the search for new probiotics. Journal of Food Science, 72(8), M310-M315.
Demirbaş, F., İspirli, H., Kurnaz, A.A., Yilmaz, M.T., & Dertli, E. 2017. Antimicrobial and functional properties of lactic acid bacteria isolated from sourdoughs. LWT-Food Science and Technology, 79, 361-366.
García-Cayuela, T., Korany, A.M., Bustos, I., de Cadiñanos, L.P.G., Requena, T., Peláez, C., & Martínez-Cuesta, M.C. 2014. Adhesion abilities of dairy Lactobacillus plantarum strains showing an aggregation phenotype. Food Research International, 57, 44-50.
Han, Q., Kong, B., Chen, Q., Sun, F., & Zhang, H. 2017. In vitro comparison of probiotic properties of lactic acid bacteria isolated from Harbin dry sausages and selected probiotics. Journal of Functional Foods, 32, 391-400.
Kunchala, R., Banerjee, R., Mazumdar, S.D., Durgalla, P., Srinivas, V., & Gopalakrishnan, S. 2016. Characterization of potential probiotic bacteria isolated from sorghum and pearl millet of the semi-arid tropics. African Journal of Biotechnology, 15(16), 613-621.
Magnusson, J., Ström, K., Roos, S., Sjögren, J., & Schnürer, J. 2003. Broad and complex antifungal activity among environmental isolates of lactic acid bacteria. FEMS Microbiology Letters, 219(1), 129-135.‏
Manini, F., Casiraghi, M.C., Poutanen, K., Brasca, M., Erba, D., & Plumed-Ferrer, C. 2016. Characterization of lactic acid bacteria isolated from wheat bran sourdough. LWT-Food Science and Technology, 66, 275-283.‏
Matejčeková, Z., Liptáková, D., & Valík, Ľ. 2017. Functional probiotic products based on fermented buckwheat with Lactobacillus rhamnosusLWT-Food Science and Technology, 81, 35-41.‏
Ogunsakin, A.O., Vanajakshi, V., Anu-Appaiah, K.A., Vijayendra, S.V.N., Walde, S.G., Banwo, K., Sanni, A.I., & Prabhasankar, P. (2017). Evaluation of functionally important lactic acid bacteria and yeasts from Nigerian sorghum as starter cultures for gluten-free sourdough preparation. LWT-Food Science and Technology, 82, 326-334.‏
Oliveira, P.M., Brosnan, B., Furey, A., Coffey, A., Zannini, E., & Arendt, E. K. 2015. Lactic acid bacteria bioprotection applied to the malting process. Part I: strain characterization and identification of antifungal compounds. Food Control, 51, 433-443.
Rajoka, M.S.R., Mehwish, H.M., Siddiq, M., Haobin, Z., Zhu, J., Yan, L., Shao, D., Xu, X., & Shi, J. 2017. Identification, characterization, and probiotic potential of Lactobacillus rhamnosus isolated from human milk. LWT-Food Science and Technology, 84, 271-280.
Reller, L.B., Weinstein, M., Jorgensen, J.H., & Ferraro, M.J. 2009. Antimicrobial susceptibility testing: a review of general principles and contemporary practices. Clinical Infectious Diseases, 49(11), 1749-1755.
Rizzello, C.G., Lorusso, A., Montemurro, M., & Gobbetti, M. 2016. Use of sourdough made with quinoa (Chenopodium quinoa) flour and autochthonous selected lactic acid bacteria for enhancing the nutritional, textural and sensory features of white bread. Food Microbiology, 56, 1-13.
Rojo-Bezares, B., Sáenz, Y., Poeta, P., Zarazaga, M., Ruiz-Larrea, F., & Torres, C. 2006. Assessment of antibiotic susceptibility within lactic acid bacteria strains isolated from wine. International Journal of Food Microbiology, 111(3), 234-240.
Ruiz Rodríguez, L., Vera Pingitore, E., Rollan, G., Cocconcelli, P. S., Fontana, C., Saavedra, L., G. Vignolo  &  Hebert, E. M. 2016. Biodiversity and technological, functional potential of lactic acid bacteria isolated from spontaneously fermented quinoa sourdoughs. Journal of Applied Microbiology, 120(5), 1289-1301.
Russo, P., Arena, M.P., Fiocco, D., Capozzi, V., Drider, D., & Spano, G. 2017. Lactobacillus plantarum with broad antifungal activity: A promising approach to increase safety and shelf-life of cereal-based products. International Journal of Food Microbiology, 247, 48–54.
Sadeghi, A., Ebrahimi, M., Raeisi, M., & Nematollahi, Z. 2019. Biological control of foodborne pathogens and aflatoxins by selected probiotic LAB isolated from rice bran sourdough. Biological Control, 130, 70-79.‏
Saxelin, M., Tynkkynen, S., Mattila-Sandholm, T., & de Vos, W.M. 2005. Probiotic and other functional microbes: from markets to mechanisms. Current Opinion in Biotechnology, 16(2), 204-211.
Sharma, P., Tomar, S.K., Sangwan, V., Goswami, P., & Singh, R. 2016. Antibiotic resistance of Lactobacillus sp. isolated from commercial probiotic preparations. Journal of Food Safety, 36(1), 38-51.
Shahrestani, F. F., Ebrahimi, M. T., Bayat, M., Hashemi, J., & Razavilar, V. 2019. Reduction of aflatoxin M1 by three acid-and bile-resistant antifungal probiotics vs. natamycin in milk. Biomedical Research, 30(1), 122-126.
Zhang, Y., Zhang, L., Du, M., Yi, H., Guo, C., Tuo, Y., Han, X., Li, J., Zhang, L., & Yang, L. 2011. Antimicrobial activity against Shigella sonnei and probiotic properties of wild lactobacilli from fermented food. Microbiological Research, 167(1), 27-31
CAPTCHA Image