نوع مقاله : مقاله پژوهشی فارسی

نویسندگان

1 دانشگاه علوم کشاورزی و منابع طبیعی گرگان.

2 دانشکده صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان.

3 پژوهشکده علوم و صنایع غذایی، مشهد، کیلومتر 12 جاده قوچان، موسسه پژوهشی علوم و صنایع غذایی

4 ، پژوهشکده علوم و صنایع غذایی، مشهد، کیلومتر 12 جاده قوچان، موسسه پژوهشی علوم و صنایع غذایی

چکیده

ترکیبات فنولی به دلیل پتانسیل آنتی‌اکسیدانی و اثرات سلامتی‌بخش بر سلامتی انسان به‌عنوان غذا‌های فراویژه شناخته شده‌اند. در این پژوهش ترکیبات فنولی با استفاده از سیال مادون بحرانی آب، از پوست پسته استخراج و پتانسیل آنتی‌اکسیدانی آن‌ها مورد بررسی قرار گرفت. فرآیند استخراج در دمای 120 تا 180 درجه سانتی‌گراد، تحت فشار‌های 10 تا 50 بار و نسبت اختلاط حلال 1:10 تا 1:30 (حلال به نمونه)، با استفاده از سیال مادون بحرانی آب انجام شد. مقدار ترکیبات فنولی کل، قدرت احیاکنندگی، قدرت رادیکال گیرندگی و قدرت پایدارکنندگی در روغن سویا برای عصار‌های استخراجی اندازه‌گیری شد. قدرت پایدارکنندگی عصاره‌ها در روغن سویا و با استفاده از آزمون اندازه‌گیری پایداری حرارتی، در دمای 110 درجه سانتی‌گراد و جریان هوای 20 لیتر بر ساعت صورت گرفت. مقایسه و تجزیه و تحلیل آماری نتایج با استفاده از روش سطح پاسخ انجام گردید. نتایج نشان داد که مقدار ترکیبات فنولی از 43/7671 تا 57/8903 میلی‌گرم گالیک اسید در صد گرم نمونه در تغییر بود. قدرت احیاکنندگی از دمای 120 تا 150 درجه سانتی‌گراد افزایش یافت و اثر فشار بر ترکیبات فنولی عصاره‌ها قابل توجه نبود. بهترین نتیجه در شرایط دمایی143 درجه سانتی‌گراد، فشار 10 بار و نسبت اختلاط 1:12 به‌دست آمد. قدرت احیاکنندگی آهن، قدرت پایدارکنندگی و جذب رادیکال‌های آزاد عصاره‌های استخراجی از پوست پسته مشابهت زیادی با آنتی اکسیدان سنتزی BHT داشت. نتایج حاکی از آن بود که کاربرد آب مادون بحرانی در استخراج ترکیبات موثره از پوست پسته تاثیر معنی‌داری در افزایش راندمان استخراج داشت و عصاره‌های استخراجی در مقایسه با روش سنتی از ویژگی‌های آنتی‌اکسیدانی بالاتری برخوردار بودند

کلیدواژه‌ها

  1. Ahmadian-Kouchaksaraie, Z., Niazmand, R. and Najaf Najafi, M. (2016). Optimization of the subcritical water extraction of phenolic antioxidants from Crocus sativus petals of saffron industry residues: Box-Behnken design and principal component analysis. Innovative Food Science and Emerging Technologies, 36: 234–244. https://doi.org/10.1016/j.ifset.2016.07.005
  2. Akhtar, M. J., Ahamed, M. and Alhadlaq, H. A. (2017). Mechanism of ROS scavenging and antioxidant signalling by redox metallic and fullerene nanomaterials: Potential implications in ROS associated degenerative disorders. BBA - General Subjects, 1861: 802-813. https://doi.org/10.1016/j.bbagen.2017.01.018
  3. Al-Dabbas, M. M., Suganuma, T., Kitahara, K., Xing Hou, D. and Fujii, M. (2006). Cytotoxic, antioxidant and antibacterial activities of Varthemiaiphionoides Boiss. Extracts Journal of Ethnopharmacology, 108:287-293. https://doi.org/10.1016/j.jep.2006.05.006
  4. Ayala, R. S. and Luke de castro, M. D. (2001). Analytical, Nutritional and Clinical Methods Section Continuous subcritical water extraction as a useful tool for isolation of edible essential oils. Food Chemistry, 75:109–113. https://doi.org/10.1016/S0308-8146(01)00212-6
  5. Braud, L., Battault, S., Meyer, G., Nascimento, A., Gaillard, S., de Sousa, G., Rahmani, R., Riva, C., Armand, M., Maixent, J. M. and Reboul, C. (2017). Antioxidant properties of tea blunt ROS-dependent lipogenesis: beneficial effect on hepatic steatosis in a high fat-high sucrose diet NAFLD obese rat model. Journal of Nutritional Biochemistry, 40: 95-104. https://doi.org/10.1016/j.jnutbio.2016.10.012
  6. Chandrika, M., Pathirana, L. andShahidi, F. (2007). The antioxidant potential of milling fractions from breadwheat and durum. Journal of Cereal Science, 45: 238–247. https://doi.org/10.1016/j.jcs.2006.08.007
  7. Chen, Y., Xie, M. Y., Nie, S. P., Li, C., and Wang, Y. X. (2008). Purification, composition analysis and antioxidant activity of a polysaccharide from the fruiting bodies of Ganodermaatrum. Food Chemistry, 107 (1): 231–241. https://doi.org/10.1016/j.foodchem.2007.08.021
  8. Ertiken, C. and Yaldiz, O. (2004). Drying of eggplant and selection of a suitable thin layer drying model. Journal of Food Engineering, 63:349–359. https://doi.org/10.1016/j.jfoodeng.2003.08.007
  9. Fregaa, N., Mozzona, M. and Lerckerb, G. (1999). Effects of free fatty acids on oxidative stability of vegetable oil. JAOCS, 76, 325–329. https://doi.org/10.1007/s11746-999-0239-4
  10. He, L., Zhang, X., Xu, H., Xu, C., Yuan, F., Knez, Z., Novak, Z. and Gao, Y. (2011). Subcritical water extraction of phenolic compounds from pomegranate (Punicagranatum) seed residues and investigation into their antioxidant activities with HPLC–ABTS•+ assay. Food and Bioproducts Processing, 243: 1-9. https://doi.org/10.1016/j.fbp.2011.03.003
  11. Horchani, H., Ben Salem, N., Zarai, Z., Sayari, A., Gargouri, Y. and Chaâbouni, M. (2010). Enzymatic synthesis of eugenol benzoate by immobilized Staphylococcus aureus lipase: Optimization using response surface methodology and determination of antioxidant activity. Bioresource Technology, 101: 2809–2817. https://doi.org/10.1016/j.biortech.2009.10.082
  12. Jayaprakasha, G., Singh, R., and Sakariah, K. (2001). Antioxidant activity of grape seed (Vitisvinifera) extracts on peroxidation models in vitro. Food Chemistry, 73 (3): 285–290. https://doi.org/10.1016/S0308-8146(00)00298-3
  13. Kerr, J., andLide, D. (2000). CRC handbook of chemistry and physics 1999–2000 (81st ed.). Boca Raton, FL, USA: CRC Press.
  14. Kim, D. S., Lim, S. B. (2020). Kinetic study of subcritical water extraction of flavonoids from citrus unshiu peel. Separation and Purification Technology, 1-9.
  15. Ko, M.J., Kwon, H.L., Chung, M.S. (2016). Pilot-scale subcritical water extraction of flavonoids from satsuma mandarin (Citrus unshiu Markovich) peel. Innovative Food Science and Emerging Technologies, DOI:10.1016/j.ifset.2016.10.00
  16. Kulisic, T., Radonic, A., Katalinic, V. and Milos, M. (2004). Use of different method for testing antioxidative activity of oregano essential oil. Food Chemistry, 85:633-640. https://doi.org/10.1016/j.foodchem.2003.07.024
  17. Kumar, M. Y., Dutta, R., Prasad, D., and Misra, K. (2011). Subcritical water extraction of antioxidant compounds from Seabuckthorn (Hippophaerhamnoides) leaves for the comparative evaluation of antioxidant activity. Food Chemistry, 127(3): 1309–1316. https://doi.org/10.1016/j.foodchem.2011.01.088
  18. Maghsoudlou, E., Esmaeilzade Kenari, R. and Raftani Amiri, Z. (2016). The effects of extraction technique on phenolic compounds extracted from fig (Ficuscarica) pulp and skin. Iranian Food Science and Technology Research Journal, 11 (6): 758-769.
  19. Mohammadi, M., Ghorbani, M., Beigbabaei, A., Yeganehzad, S., Sadeghi-Mahoonak, A. 2019. Investigation effects of extracted compounds from shell and cluster of pistachio nut on the inactivation of free radicals, Heliyon, 5: e02438. https://doi.org/10.1016/j.heliyon.2019.e02438
  20. Mrabet, A., García-Borrego, A., Jiménez-Araujo, A., Fernández-Bolaños, J., Sindic, M. and Rodríguez-Gutiérrez, M. 2017. Phenolic extracts obtained from thermally treated secondary varieties of dates: Antimicrobial and antioxidant properties. LWT- Food Science and Technology, 79: 416-422. https://doi.org/10.1016/j.lwt.2017.01.064
  21. Pintoa, D., Vieira, E. F., Peixoto, A. F., Freire, C., Freitas, V., Costa, P., Delerue-Matos, C., Rodrigues, F. (2021). Optimizing the extraction of phenolic antioxidants from chestnut shells by subcritical water extraction using response surface methodology. Food Chemistry334, 127521. https://doi.org/10.1016/j.foodchem.2020.127521
  22. Rajaei, A., Barzegar, M., MohabatiMobarez, A., Sahari, M. A. and Hamidi Esfahani, Z. (2010). Antioxidant, anti-microbial and antimutagenicity activities of pistachio (Pistachiavera) green hull extract. Food and Chemical Toxicology, 48: 107–112. https://doi.org/10.1016/j.fct.2009.09.023
  23. Ramos, L., Kristenson, E. and Brinkman, U. T. (2002). Current use of pressurised liquid extraction and subcritical water extraction in environmental analysis. Journal of Chromatography A, 975(1): 3–29. https://doi.org/10.1016/S0021-9673(02)01336-5
  24. Rodrigues, L.G.G., Mazzutti, S., Siddique, I., da Silva, M., Vitali, L., Ferreira, S.R.S. (2020). Subcritical Water Extraction and Microwave-Assisted Extraction applied for the recovery of bioactive components from Chaya (Cnidoscolus aconitifolius), The Journal of Supercritical Fluids, https://doi.org/10.1016/j.supflu.2020.104976
  25. Shaddel, R., Maskooki, A., Haddad-Khodaparast, M. H., Azadmard-Damirchi, S., Mohamadi, M. and Fathi-Achachlouei, B. (2014). Optimization of Extraction Process of Bioactive Compounds from Bene Hull Using Subcritical Water. Food Sci. Biotechnol, 23(5): 1459-1468. https://doi.org/10.1007/s10068-014-0200-7
  26. Shi, J., Yu, J., Pohorly, J., Young, J. C., Bryan, M., and Wu, Y. (2003). Optimization of the extraction of polyphenols from grape seed meal by aqueous ethanol solution. Food Agriculture & Environment, 1(2): 42–47. https://doi.org/10.1007/s10068-014-0200-7
  27. Talebi, S., Alizadeh, M., Ramezanpour, S. and Ghasemnajad, A. (2020). The antioxidant properties of some endemic barberry genotypes of Iran. Iranian Journal of Horticultural Science, 51 (1): 91-107. 
  28. Thoo, Y. Y., Ho, S. K., Liang, J. Y., Ho, C.W. and Tan, C. P. (2010). Effects of binary solvent extraction system, extraction time and extraction temperature on phenolic antioxidants and antioxidant capacity from mengkudu (Morindacitrifolia). Food Chemistry, 120 (1): 290–295. https://doi.org/10.1016/j.foodchem.2009.09.064
  29. Tian, Y., Zeng, H., Xu, Z., Zheng,, Lin, Y., Gan, C. and Martin Lo, Y. (2012). Ultrasonic-assisted extraction and antioxidant activity of polysaccharides recovered from white button mushroom (Agaricusbisporus). Carbohydrate Polymers, 88: 522– 529. https://doi.org/10.1016/j.carbpol.2011.12.042
  30. Tilahun, A. and Chun, B. S. (2017). Molecular modification of native coffee polysaccharide using subcritical water treatment: Structural characterization, antioxidant, and DNA protecting activities. International Journal of Biological Macromolecules, 99: 555-562. https://doi.org/10.1016/j.ijbiomac.2017.03.034
  31. USDA,http://www.usda.gov/wps/portal/usda/usdahome.
  32. Yang, Y., Song, X., Sui, X., Qi, B., Wang, Z., Li, Y. and Jiang, L. (2016). Rosemary extract can be used as a synthetic antioxidant to improve vegetable oil oxidative stability. Industrial Crops and Products, 80: 141–147. https://doi.org/10.1016/j.indcrop.2015.11.044
CAPTCHA Image