نوع مقاله : مقاله پژوهشی فارسی

نویسندگان

1 گروه فرآوری محصولات شیلاتی، دانشکده منابع طبیعی و علوم دریایی، دانشگاه تربیت مدرس ، نور، ایران

2 گروه فرآوری محصولات شیلاتی، دانشکده منابع طبیعی و علوم دریایی، دانشگاه تربیت مدرس ، نور، ایران.

3 مرکز ملی تحقیقات فرآوری آبزیان، موسسه تحقیقات علوم شیلاتی کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، بندر انزلی، ایران.

چکیده

در این تحقیق، بسته‌بندی هوشمند حساس به pH بر پایه فیلم کامپوزیتی صمغ عربی- کربوکسی متیل سلولز حاوی آنتوسیانین ریحان بنفش (Ocimum basilicum. L) تهیه شد و ویژگی‌های ساختاری، فیزیکی، مکانیکی، حرارتی، آنتی‌اکسیدانی و حساسیت رنگی نسبت به pHهای مختلف و گاز آمونیاک مورد ارزیابی قرار گرفت. بدین منظور ابتدا آنتوسیانین‌های ریحان بنفش استخراج و حساسیت رنگی آن‌ها سنجش گردید. در مرحله بعد آنتوسیانین‌های استخراج شده در سه غلظت 40، 60 و 80 میلی­گرم در 100 میلی‌لیتر به ماتریس پلیمری فیلم کامپوزیت صمغ عربی- کربوکسی متیل سلولز اضافه و ویژگی‌های مختلف آن ارزیابی گردید. نتایج آزمون‌های FTIR و XRD نشان داد که آنتوسیانین استخراج شده به‌خوبی در ساختار فیلم کامپوزیتی صمغ عربی- کربوکسی متیل سلولز قرار گرفته است. اضافه شدن آنتوسیانین به ماتریس پلیمری سبب افزایش نفوذپذیری به بخار آب (g pas-1 m-1 s-1 73/4) و ویژگی‌های آنتی‌اکسیدانی و همچنین کاهش زاویه تماس (33/55 درجه)، کشش‌پذیری (56/1%) و دمای انتقال ذوب گردید. مقاومت کششی فیلم‌های تهیه شده با افزایش میزان آنتوسیانین (صفر تا 60 میلی‌گرم در 100 گرم محلول فیلم) از میزان 19 تا 64/23 مگاپاسکال افزایش یافت اما با افزایش بیشتر میزان آنتوسیانین، کاهش یافت. قرار گرفتن فیلم شناساگر تهیه شده در معرض گاز آمونیاک و pHهای مختلف، منجر به تغییر رنگ فیلم‌ها از رنگ قرمز به رنگ زرد گردید. این تغییرات رنگی فیلم‌ها با تغییرات رنگی محلول آنتوسیانین همخوانی داشت. براساس این نتایج می‌توان اظهار داشت که فیلم شناساگر تهیه شده در این پژوهش می‌تواند به‌عنوان بسته‌بندی هوشمند جهت ارزیابی چشمی تازگی و فساد در محصولات غذایی مورد استفاده قرار گیرد.

کلیدواژه‌ها

  1. Alizadeh-Sani, M., Tavassoli, M., Mohammadian, E., Ehsani, A., Khaniki, G. J., Priyadarshi, R., & Rhim, J. W. (2021). pH-responsive color indicator films based on methylcellulose/chitosan nanofiber and barberry anthocyanins for real-time monitoring of meat freshness. International Journal of Biological Macromolecules, 166, 741-750. https://doi.org/10.1016/j.ijbiomac.2020.10.231
  2. Amalraj, A., Haponiuk, J. T., Thomas, S., & Gopi, S. (2020). Preparation, characterization and antimicrobial activity of polyvinyl alcohol/gum arabic/chitosan composite films incorporated with black pepper essential oil and ginger essential oil. International journal of biological macromolecules, 151, 366-375. https://doi.org/10.1016/j.ijbiomac.2020.02.176
  3. ASTM (2002). Standard Test Method for Tensile Properties of Thin Plastic Sheeting. Annual Book of ASTM Standards. Designation D882-02. Philadelphia: American Society for Testing Materials.
  4. Bolin, H. R., & Huxsoll, C. C. (1991). Effect of preparation procedures and storage parameters on quality retention of salad‐cut lettuce. Journal of Food Science, 56(1), 60-62. 1111/j.1365-2621.1991.tb07975.x
  5. Castañeda-Ovando, A., de Lourdes Pacheco-Hernández, M., Páez-Hernández, M. E., Rodríguez, J. A., & Galán-Vidal, C. A. (2009). Chemical studies of anthocyanins: A review. Food Chemistry, 113(4), 859-871. https://doi.org/10.1016/j.foodchem.2008.09.001
  6. Chen, H. Z., Zhang, M., Bhandari, B., & Yang, C. H. (2020). Novel pH-sensitive films containing curcumin and anthocyanins to monitor fish freshness. Food Hydrocolloids, 100, 105438. https://doi.org/10.1016/j.foodhyd.2019.105438
  7. Chen, S., Wu, M., Lu, P., Gao, L., Yan, S., & Wang, S. (2020). Development of pH indicator and antimicrobial cellulose nanofibre packaging film based on purple sweet potato anthocyanin and oregano essential oil. International Journal of Biological Macromolecules, 149, 271-280. https://doi.org/10.1016/j.ijbiomac.2020.01.231
  8. Choi, I., Lee, J. Y., Lacroix, M., & Han, J. (2017). Intelligent pH indicator film composed of agar/potato starch and anthocyanin extracts from purple sweet potato. Food Chemistry, 218, 122-128. https://doi.org/10.1016/j.foodchem.2016.09.050
  9. Chun, J., & Rainey, F. A. (2014). Integrating genomics into the taxonomy and systematics of the Bacteria and Archaea. International journal of systematic and evolutionary microbiology, 64(2), 316-324. https://doi.org/10.1099/ijs.0.054171-0
  10. Close, D. C., & Beadle, C. L. (2003). The ecophysiology of foliar anthocyanin. The Botanical Review, 69(2), 149-161. https://doi.org/10.1663/0006-8101(2003)069[0149:TEOFA]2.0.CO;2
  11. Ezati, P., & Rhim, J. W. (2020). pH-responsive chitosan-based film incorporated with alizarin for intelligent packaging applications. Food Hydrocolloids, 102, 105629. https://doi.org/10.1016/j.foodhyd.2019.105629
  12. Ghaderi, J., Hosseini, S. F., Keyvani, N., & Gómez-Guillén, M. C. (2019) Polymer blending effects on the physicochemical and structural features of the chitosan/poly (vinyl alcohol)/fish gelatin ternary biodegradable films. Food Hydrocolloids, 95, 122-132. https://doi.org/10.1016/j.foodhyd.2019.04.021
  13. Ghasemlou, M., Khodaiyan, F., & Oromiehie, A. (2011). pHysical, mechanical, barrier, and thermal properties of polyol-plasticized biodegradable edible film made from Kefiran. Carbohydrate Polymers: 84(1), 477-483. https://doi.org/10.1016/j.carbpol.2010.12.010
  14. Golasz, L. B., Silva, J. D., & Silva, S. B. D. (2013). Film with anthocyanins as an indicator of chilled pork deterioration. Food Science and Technology, 33, 155-162. https://doi.org/10.1590/S0101-20612013000500023
  15. Grajeda-Iglesias, C., Salas, E., Barouh, N., Baréa, B., & Figueroa-Espinoza, M. C. (2017). Lipophilization and MS characterization of the main anthocyanins purified from hibiscus flowers. Food Chemistry, 230, 189-194. https://doi.org/10.1016/j.foodchem.2017.02.140
  16. Huang, S., Xiong, Y., Zou, Y., Dong, Q., Ding, F., Liu, X., & Li, H. (2019). A novel colorimetric indicator based on agar incorporated with Arnebia euchroma root extracts for monitoring fish freshness. Food Hydrocolloids, 90, 198-205. https://doi.org/10.1016/j.foodhyd.2018.12.009
  17. Inyoung , Jun Young Lee., Monique Lacroix., & Jaejoon Han. (2017). Intelligent pH indicator film composed of agar/potato starch and anthocyanin extracts from purple sweet potato. Food Chemistry. 218: 122-128. https://doi.org/10.1016/j.foodchem.2016.09.050
  18. Jahit, I. S., Nazmi, N. N. M., Isa, M. I. N., & Sarbon, N. M. (2016). Preparation and physical properties of gelatin/CMC/chitosan composite films as affected by drying temperature. International Food Research Journal23(3).
  19. Jamshidian, M., Tehrany, E.A., Imran, M., Akhtar, M.J., Cleymand, F., Desobry, S. (2012). Structural, mechanical and barrier properties of active PLA-antioxidant films. Journal of food Engineering, 110 (3): 380-389. https://doi.org/10.1016/j.jfoodeng.2011.12.034
  20. Jiang, G., Hou, X., Zeng, X., Zhang, C., Wu, H., Shen, G., Zhang, Z. (2020). Preparation and characterization of indicator films from carboxymethyl-cellulose/starch and purple sweet potato (Ipomoea batatas (L.) lam) anthocyanins for monitoring fish freshness. International journal of biological macromolecules, 143, 359-372. https://doi.org/10.1016/j.ijbiomac.2019.12.024
  21. Jiang, X., Jiang, T., Gan, L., Zhang, X., Dai, H., Zhang, X. (2012). The plasticizing mechanism and effect of calcium chloride on starch/ poly (vinyl alcohol) films, Carbohydr Polym. 90(4) 1677-1684. https://doi.org/10.1016/j.carbpol.2012.07.050
  22. Kanimozhi, K., Basha, S. K., & Kumari, V. S. (2016). Processing and characterization of chitosan/PVA and methylcellulose porous scaffolds for tissue engineering. Materials Science and Engineering: C, 61, 484-491.‏ https://doi.org/10.1016/j.msec.2015.12.084
  23. Kerry, J. and Butler, P., (2008). Smart Packaging Technologies for Fast Moving Consumer Goods: Wiley Online Library, 681-689p.
  24. Kuswandi, B., Larasati, T.S., Abdullah, A. and Heng, L.Y., (2012a). Real-Time Monitoring of Shrimp Spoilage Using on-Package Sticker Sensor Based on Natural Dye of Curcumin. Food Analytical Methods, 5(4): 881-889. https://doi.org/10.1007/s12161-011-9326-x
  25. Liang, T., Sun, G., Cao, L., Li, J., & Wang, L. (2019). A pH and NH3 sensing intelligent film based on Artemisia sphaerocephala Krasch. gum and red cabbage anthocyanins anchored by carboxymethyl cellulose sodium added as a host complex. Food Hydrocolloids, 87, 858-868. https://doi.org/10.1016/j.foodhyd.2018.08.028
  26. Liu, D., Cui, Z., Shang, M., & Zhong, Y. (2021). A colorimetric film based on polyvinyl alcohol/sodium carboxymethyl cellulose incorporated with red cabbage anthocyanin for monitoring pork freshness. Food Packaging and Shelf Life, 28, 100641. https://doi.org/10.1016/j.fpsl.2021.100641
  27. Luchese, C. L., Sperotto, N., Spada, J. C., & Tessaro, I. C. (2017). Effect of blueberry agro-industrial waste addition to corn starch-based films for the production of a pH-indicator film.International journal of biological macromolecules, 104, 11-18. https://doi.org/10.1016/j.ijbiomac.2017.05.149
  28. Ma, Q., & Wang, L. (2016). Preparation of a visual pH-sensing film based on tara gum incorporating cellulose and extracts from grape skins. Sensors and Actuators B: Chemical, 235, 401-407. https://doi.org/10.1016/j.snb.2016.05.107
  29. Mariniello, L., Di Pierro, P., Esposito, C., Sorrentino, A., Masi, P., & Porta, R. (2003). Preparation and mechanical properties of edible pectin–soy flour films obtained in the absence or presence of transglutaminase. Journal of Biotechnology, 102(2), 191-198. https://doi.org/10.1016/S0168-1656(03)00025-7
  30. Moradi, M., Tajik, H., Rohani, S. M. R., Oromiehie, A. R., Malekinejad, H., Aliakbarlu, J., & Hadian, M. (2012). Characterization of antioxidant chitosan film incorporated with Zataria multiflora Boiss essential oil and grape seed extract. LWT-Food Science and Technology, 46(2), 477-484. https://doi.org/10.1016/j.lwt.2011.11.020
  31. Ojagh, S. M., Rezaei, M., Razavi, S. H., & Hosseini, S. M. H. (2010). Development and evaluation of a novel biodegradable film made from chitosan and cinnamon essential oil with low affinity toward water. Food Chemistry, 122(1), 161-166. https://doi.org/10.1016/j.foodchem.2010.02.033
  32. Ojagh, S.M., Shariatmadari, F., Adeli, A., Kordjozi, M., & Abdolahi, M. (2018). Development composite films based chitosan-Katira and evaluation physical and mechanical properties. Innovative Food Technologies. 4, 151-161. (In Persian)
  33. Pereira, V.A., de Arruda, I.N.Q. and Stefani, R., (2015). Active Chitosan/PVA Films with Anthocyanins from Brassica oleraceae (Red Cabbage) as Time–Temperature Indicators for Application in Intelligent Food Packaging. Food Hydrocolloids, 43(2): 180-188. https://doi.org/10.1016/j.foodhyd.2014.05.014
  34. Qi, H., Cai, J., Zhang, L., & Kuga, S. (2009). Properties of films composed of cellulose nanowhiskers and a cellulose matrix regenerated from alkali/urea solution. Biomacromolecules, 10(6), 1597-1602.
  35. Rajaie, A., Shokrchizadeh, H. (2018). Investigation of physical and mechanical properties of edible film prepared from opopanax gum (Commiphora guidottii). 16 (91), 323-335. (In Persian).
  36. Ravanfar, R. Moein, M.R. Niakousari, M. and Tamaddon, A.M. (2018) Extraction and fractionation of anthocyanins from red cabbage: ultrasonic-assisted extraction and conventional percolation method. Journal of Food Measurement and Characterization 12:2271–2277. https://doi.org/10.1007/s11694-018-9844-y
  37. Remon, S., Ferrer, A., Marquina, P., Burgos, J., Oria, R., (2000). Use of modified atmospheres to prolong the postharvest life of Burlat cherries at two different degrees of ripeness. Journal of the Science of Food and Agriculture, 80(10,) 1545 – 1552. https://doi.org/10.1002/1097-0010(200008)80:10<1545::AID-JSFA680>3.0.CO;2-X
  38. Rezaei, A., Rezaei, M., Alboofetileh, M. (2021). Preparation of biodegradable carboxymethyl cellulose-Arabic gum composite film and evaluation of the physical, mechanical and thermal properties. Iranian Food Science and Technology Research Journal. 17 (2). 287-297. (In Persian).
  39. Sajjadi, S. E. (2006). Analysis of the essential oils of two cultivated basil (Ocimum basilicum) from Iran. DARU Journal of Pharmaceutical Sciences, 14(3), 128-130.
  40. Sothornvit, R., Krochta, J.M. (2005). Plasticizers in edible films and coating. In innovations in food packaging. 403-433. https://doi.org/10.1016/B978-012311632-1/50055-3
  41. Suppakul, P., Miltz, J., Sonneveld, K., Bigger, S.W. (2003). Active packaging technologies with emphasis on antimicrobial packaging and its applications, Journal of Food Science, 68: 408-420. https://doi.org/10.1111/j.1365-2621.2003.tb05687.x
  42. Tilebeni, H. G. (2011). Review to basil medicinal plant. International Journal of Agronomy and Plant Production, 2(1), 5-9.
  43. Tsai, P. J., McIntosh, J., Pearce, P., Camden, B., & Jordan, B. R. (2002). Anthocyanin and antioxidant capacity in Roselle (Hibiscus sabdariffa) extract. Food research international, 35(4), 351-356. https://doi.org/10.1016/S0963-9969(01)00129-6
  44. Xu, T., Gao, C., Yang, Y., Shen, X., Huang, M., Liu, S., & Tang, X. (2018). Retention and release properties of cinnamon essential oil in antimicrobial films based on chitosan and gum arabic. Food Hydrocolloids, 84, 84-92. https://doi.org/10.1016/j.foodhyd.2018.06.003
  45. Yong, H., Wang, X., Bai, R., Miao, Z., Zhang, X., & Liu, J. (2019). Development of antioxidant and intelligent pH-sensing packaging films by incorporating purple-fleshed sweet potato extract into chitosan matrix.Food hydrocolloids, 90, 216-224. https://doi.org/10.1016/j.foodhyd.2018.12.015
  46. Yoshida, C. M., Maciel, V. B. V., Mendonça, M. E. D., & Franco, T. T. (2014). Chitosan biobased and intelligent films: Monitoring pH variations. LWT-food science and technology, 55(1), 83-89. https://doi.org/10.1016/j.lwt.2013.09.015
  47. Zhang, X., Lu, S., & Chen, X. (2014). A visual pH sensing film using natural dyes from Bauhinia blakeana Dunn. Sensors and actuators B: Chemical, 198, 268-273. https://doi.org/10.1016/j.snb.2014.02.094
CAPTCHA Image