نوع مقاله : مقاله پژوهشی فارسی

نویسندگان

1 گروه علوم و صنایع غذایی، دانشگاه فردوسی مشهد، مشهد، ایران

2 مرکز علوم طعم و غذا، اینرا، دانشگاه بورگوگن، دیژون، فرانسه

چکیده

در این پژوهش از روش جذب لایه­به­لایه پلی الکترولیت‌های ایزوله پروتئین سویا و نشاسته اصلاح‌شده برای تولید میکروکپسول محتوی لیمونن استفاده شد. ویژگی‌های مورفولوژیکی و ساختاری میکروکپسول‌های تولیدی بررسی گردید. میزان رهایش لیمونن از میکروکپسول‌های تولید شده به‌صورت دو و شش لایه در شرایط دهان مصنوعی در شرایط تنش برشی مختلف (0، 50 و 100 دور در دقیقه) مورد ارزیابی قرار گرفت. نمایه رهایش لیمونن از میکروکپسول‌ها نشان داد لیمونن در میکروکپسول‌های دو لایه با شیب بیشتری نسبت به شش لایه، رهایش یافته و سریع‌تر به حداکثر رهایش می‌رسد زیرا با افزایش تعداد لایه‌های دیواره، رهایش به تأخیر می‌افتد. نتایج به‌دست‌آمده از رهایش لیمونن از میکروکپسول­ها نشان داد مدل درجه اول بهترین توصیف را از رهایش داشت و بر اساس معادله کورسمیر-پپاس رهایش لیمونن از میکروکپسول‌ها غالباً از نوع نفوذ بود. همچنین نتایج نشان داد ضریب نفوذ با افزایش تنش برشی، بیشتر شد و ضریب نفوذ در میکروکپسول‌های دو لایه نسبت به شش لایه بیشتر بود.

کلیدواژه‌ها

موضوعات

  1. Ansarifar, E., Mohebbi, M., Shahidi, F., Koocheki, A., & Ramezanian, N. (2017). Novel multilayer microcapsules based on soy protein isolate fibrils and high methoxyl pectin: Production, characterization and release modeling. International Journal of Biological Macromolecules 97: 761-769. https://doi.org/10.1016/j.ijbiomac.2017.01.056.
  2. Ansarifar, E., Shahidi, F., Mohebbi, M., Koocheki, A., & Ramazanian, N. (2017). Investigation of multilayer microcapsules based on electrostatic adsorption of soy protein isolated fibrils and high methoxyl pectin containing diacetyl. Iranian Journal Food Science and Technology Research 13(4): 553-565.
  3. Dash, S., Murthy, P.N., Nath, L., & Chowdhury, P. (2010). Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol Pharm 67(3): 217-223.
  4. Decher, G., & Hong, J. (1991). Buildup of ultrathin multilayer films by a self‐assembly process: II. Consecutive adsorption of anionic and cationic bipolar amphiphiles and polyelectrolytes on charged surfaces. Berichte der Bunsengesellschaft für physikalische Chemie 95(11): 1430-1434. https://doi.org/10.1002/bbpc.19910951122.
  5. Decher, G., & Schlenoff, J.B. (2006). Multilayer thin films: sequential assembly of nanocomposite materials: John Wiley & Sons.
  6. Dokić, L., Krstonošić, V., & Nikolić, I. (2012). Physicochemical characteristics and stability of oil-in-water emulsions stabilized by OSA starch. Food Hydrocolloids 29(1): 185-192. https://doi.org/10.1016/j.foodhyd.2012.02.008.
  7. Elzoghby, A.O., Samy, W.M., & Elgindy, N.A. (2012). Albumin-based nanoparticles as potential controlled release drug delivery systems. Journal of Controlled Release 157(2): 168-182. https://doi.org/10.1016/j.foodhyd.2012.02.008.
  8. Gharsallaoui, A., Roudaut, G., Chambin, O., Voilley, A., & Saurel, R. (2007). Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Research International 40(9): 1107-1121. https://doi.org/10.1016/j.foodres.2007.07.004.
  9. Gunning, Y.M., Gunning, P.A., Kemsley, E.K., Parker, R., Ring, S.G., Wilson, R.H., & Blake, A. (1999). Factors affecting the release of flavor encapsulated in carbohydrate matrixes. Journal of Agricultural and Food Chemistry 47(12): 5198-5205. https://doi.org/10.1021/jf990039r.
  10. Güzey, D., & McClements, D.J. (2006). Influence of environmental stresses on O/W emulsions stabilized by β-lactoglobulin–pectin and β-lactoglobulin–pectin–chitosan membranes produced by the electrostatic layer-by-layer deposition technique. Food Biophysics 1(1): 30-40. https://doi.org/10.1007/s11483-005-9002-z.
  11. Huang, G.-Q., Sun, Y.-T., Xiao, J.-X., & Yang, J. (2012). Complex coacervation of soybean protein isolate and chitosan. Food Chemistry 135(2): 534-539. https://doi.org/10.1016/j.foodchem.2012.04.140
  12. Humblet-Hua, K., Scheltens, G., Van Der Linden, E., & Sagis, L. (2011). Encapsulation systems based on ovalbumin fibrils and high methoxyl pectin. Food Hydrocolloids 25(4): 569-576. https://doi.org/10.1016/j.foodhyd.2011.01.003.
  13. Jafari, S.M., Assadpoor, E., He, Y., & Bhandari, B. (2008). Encapsulation efficiency of food flavours and oils during spray drying. Drying technology 26(7): 816-835. https://doi.org/10.1080/07373930802135972.
  14. Luo, F.-x., Huang, Q., Fu, X., Zhang, L.-x., & Yu, S.-j. (2009). Preparation and characterisation of crosslinked waxy potato starch. Food Chemistry 115(2): 563-568. https://doi.org/10.1016/j.foodchem.2008.12.052.
  15. McClements, D.J. (2005). Theoretical analysis of factors affecting the formation and stability of multilayered colloidal dispersions. Langmuir 21(21): 9777-9785. https://doi.org/10.1021/la0512603.
  16. Mendanha, D.V., Ortiz, S.E.M., Favaro-Trindade, C.S., Mauri, A., Monterrey-Quintero, E.S., & Thomazini, M. (2009). Microencapsulation of casein hydrolysate by complex coacervation with SPI/ Food Research International 42(8): 1099-1104. https://doi.org/10.1016/j.foodres.2009.05.007.
  17. Mohebbi, M., Varidi, M., Noshad, M., & Khalilian Movahhed, M. (2019). Evaluation of the Release of Microcapsulated Vanillin under Simulated Oral Conditions. Research and Innovation in Food Science and Technology 8(2): 111-124. https://doi.org/10.22101/JRIFST.2019.07.22.821.
  18. Nedovic, V., Kalusevic, A., Manojlovic, V., Levic, S., & Bugarski, B. (2011). An overview of encapsulation technologies for food applications. Procedia Food Science 1: 1806-1815. https://doi.org/10.1016/j.profoo.2011.09.265.
  19. Nesterenko, A., Alric, I., Silvestre, F., & Durrieu, V. (2012). Influence of soy protein's structural modifications on their microencapsulation properties: α-Tocopherol microparticle preparation. Food Research International 48(2): 387-396. https://doi.org/10.1016/j.foodres.2012.04.023.
  20. Nilsson, L., & Bergenståhl, B. (2007). Adsorption of hydrophobically modified anionic starch at oppositely charged oil/water interfaces. Journal of Colloid and Interface Science 308(2): 508-513. https://doi.org/10.1016/j.jcis.2007.01.024.
  21. Noshad, M., Mohebbi, M., Koocheki, A., & Shahidi, F. (2016). Influence of interfacial engineering on stability of emulsions stabilized with soy protein isolate. Journal of Dispersion Science and Technology 37(1): 56-65. https://doi.org/10.1080/01932691.2015.1027907.
  22. Noshad, M., Mohebbi, M., Shahidi, F., & Koocheki, A. (2015). Effect of layer-by-layer polyelectrolyte method on encapsulation of vanillin. International Journal of Biological Macromolecules 81: 803-808. https://doi.org/10.1016/j.ijbiomac.2015.09.012.
  23. Peyratout, C.S., & Daehne, L. (2004). Tailor‐made polyelectrolyte microcapsules: from multilayers to smart containers. Angewandte Chemie International Edition 43(29): 3762-3783. https://doi.org/10.1002/anie.200300568.
  24. Qiu, X., Leporatti, S., Donath, E., & Möhwald, H. (2001). Studies on the drug release properties of polysaccharide multilayers encapsulated ibuprofen microparticles. Langmuir 17(17): 5375-5380. https://doi.org/10.1021/la010201w.
  25. Rodríguez, S.D., Wilderjans, T., Sosa, N., & Bernik, D.L. (2013). Image texture analysis and gas sensor array studies applied to vanilla encapsulation by octenyl succinic anhydride starches. Journal of Food Research 2(2): 36-48. https://doi.org/10.5539/jfr.v2n2p36.
  26. Roesch, R., & Corredig, M. (2002). Characterization of oil‐in‐water emulsions prepared with commercial soy protein concentrate. Journal of Food Science 67(8): 2837-2842. https://doi.org/10.1111/j.1365-2621.2002.tb08825.x.
  27. Sagis, L.M., de Ruiter, R., Miranda, F.J.R., de Ruiter, J., Schroën, K., van Aelst, A. C., van der Linden, E. (2008). Polymer microcapsules with a fiber-reinforced nanocomposite shell. Langmuir 24(5): 1608-1612. https://doi.org/10.1021/la7032115.
  28. Siepmann, J., Siegel, R.A., & Siepmann, F. (2012). Diffusion controlled drug delivery systems. In Fundamentals and applications of controlled release drug delivery (pp. 127-152): Springer. https://doi.org/10.1016/j.jconrel.2011.10.006.
  29. Siepmann, J., & Siepmann, F. (2008). Mathematical modeling of drug delivery. International Journal of Pharmaceutics 364(2): 328-343. https://doi.org/j.ijpharm.2008.09.004.
  30. Soottitantawat, A., Yoshii, H., Furuta, T., Ohkawara, M., & Linko, P. (2003). Microencapsulation by spray drying: influence of emulsion size on the retention of volatile compounds. Journal of Food Science 68(7): 2256-2262. https://doi.org/10.1111/j.1365-2621.2003.tb05756.x.
  31. Tesch, S., Gerhards, C., & Schubert, H. (2002). Stabilization of emulsions by OSA starches. Journal of Food Engineering 54(2): 167-174. https://doi.org/10.1016/S0260-8774(01)00206-0.
  32. Van Ruth, S., & Roozen, J. (2000). Influence of mastication and saliva on aroma release in a model mouth system. Food Chemistry 71(3): 339-345. https://doi.org/10.1016/S0308-8146(00)00186-2.
  33. Wang, J.-M., Yang, X.-Q., Yin, S.-W., Yuan, D.-B., Xia, N., & Qi, J.-R. (2011). Growth kinetics of amyloid-like fibrils derived from individual subunits of soy β-conglycinin. Journal of Agricultural and Food Chemistry 59(20): 11270-11277. https://doi.org/10.1021/jf202541m.
  34. Ye, S., Wang, C., Liu, X., & Tong, Z. (2005). Multilayer nanocapsules of polysaccharide chitosan and alginate through layer-by-layer assembly directly on PS nanoparticles for release. Journal of Biomaterials Science Polymer Edition 16(7): 909-923. https://doi.org/10.1163/1568562054255691.
  35. Yow, H.N., & Routh, A.F. (2006). Formation of liquid core–polymer shell microcapsules. Soft Matter 2(11): 940-949. https://doi.org/10.1039/B606965
  36. Zandi, M., Mohebbi, M., Varidi, M., & Ramezanian, N. (2014). Evaluation of diacetyl encapsulated alginate–whey protein microspheres release kinetics and mechanism at simulated mouth conditions. Food Research International 56: 211-217. https://doi.org/10.1016/j.foodres.2013.11.035.
  37. Zuidam, N.J., & Nedovic, V. (2010). Encapsulation technologies for active food ingredients and food processing. Springer New York, NY. https://doi.org/10.1007/978-1-4419-1008-0.

 

CAPTCHA Image