با همکاری انجمن علوم و صنایع غذایی ایران

نوع مقاله : مقاله مروری لاتین

نویسندگان

گروه علوم و غذایی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ایران

چکیده

دامپروری سنتی به‌دلیل اثرات زیانبار بر محیط‌زیست و محدودیت در امکان توسعه مقیاس تولید، یکی از عوامل اصلی چالش جهانی عدم امنیت غذایی محسوب می‌شود. کشت سلول‌های جانوری در شرایط کنترل شده، منجر به تولید گوشت کشت داده شده یا گوشت مصنوعی گردیده که می‌تواند گزینه‌ای اخلاقی‌تر و سازگارتر با محیط‌زیست برای تأمین امنیت غذایی باشد. این مقاله مروری، پتانسیل گوشت مصنوعی را با تحلیل دقیق تأثیرات آن بر سیستم‌های جهانی تولید و توزیع مواد غذایی، چشم‌انداز پایداری آن، پیشرفت‌های تکنولوژیکی حاصل شده و موانع پیش رو، برای رفع معضل امنیت غذایی مورد ارزیابی قرار می‌دهد. تحلیل چرخه حیات نشان می‌دهد تولید گوشت مصنوعی، اثرات زیست‌محیطی به مراتب کمتری نسبت به گوشت سنتی دارد. پیشرفت‌های علمی مهم در زمینه‌های فناوری داربست‌ها، مهندسی بافت و طراحی بیوراکتورها، تولید گوشت مصنوعی را به تجاری‌سازی نزدیک‌تر کرده است. با این حال، موانع قابل توجهی نیز وجود دارد که باید مرتفع شوند؛ از جمله امکان تولید انبوه در مقیاس بزرگ با هزینه مقرون به صرفه، تطبیق با چارچوب‌های پیچیده قانون‌گذاری و نظارتی، تضمین ایمنی و سلامت محصول و افزایش پذیرش آن از سوی مصرف‌کنندگان. برای غلبه بر این چالش‌ها و تحقق وعده گوشت مصنوعی در راستای بهبود امنیت غذایی و تغذیه، حفظ پایداری محیط‌زیست و رعایت رفاه حیوانات، اتخاذ رویکردی میان‌رشته‌ای که ابعاد علمی، فنی، قانونی و اجتماعی را در نظر می‌گیرد، امری ضروری است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Exploring the Potential of Cultured Meat: Technological Advancements, Sustainability Prospects, and Challenges

نویسندگان [English]

  • Pouya Ramezani
  • Ali Motamedzadegan

Department of Food Science and Technology, Sari Agricultural Sciences and Natural Resources University, Iran

چکیده [English]

The effects of traditional livestock farming on the environment and its limited scalability contribute to the persistent worldwide dilemma of food insecurity. Growing animal cells under regulated conditions has given rise to cultured meat, which might be a more ethical and ecological option. The potential of cultured meat to solve issues with food security is critically examined in this review article, which does so by thoroughly analyzing its effects on global food systems, sustainability prospects, technical breakthroughs, and related obstacles. Life cycle analyses show that the environmental impact of producing cultured meat is much lower than that of producing traditional meat. Significant scientific advancements have moved the production of cultured meat closer to commercial viability, including scaffold advances, tissue engineering, bioreactor design, and cell line optimization. There are still a number of formidable obstacles to overcome, including establishing large-scale manufacturing at a reasonable cost, negotiating intricate regulatory environments, guaranteeing product safety, and cultivating customer acceptability. To overcome these challenges and realize the promise of cultured meat to improve food and nutrition security while promoting environmental sustainability and animal welfare, an interdisciplinary strategy incorporating scientific, technical, regulatory, and social views is essential.

کلیدواژه‌ها [English]

  • Bioreactor design
  • Cultured meat
  • Food security
  • Environmental sustainability
  • Scaffolding

©2024 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0).

  1. Ahmad, S.S., Hee Jin, Ch., Khurshid, A., Sibhghatulla, Sh.,, Jeong Ho, L., Shahid, A., & Sung Soo, H., (2023). The roles of growth factors and hormones in the regulation of muscle satellite cells for cultured meat production. Journal of Animal Science and Technology, 65(1), 16–31. https://doi.org/10.5187/jast.2022.e114
  2. Ashizawa, R., Natalie, R., Sophia, L., Avery, P., Victoria, D., & Kaplan, D.L. (2022). Entomoculture: A preliminary techno-economic assessment. Foods, 11(19), 3037. https://doi.org/10.3390/foods11193037
  3. Allan, S.J., De Bank, P.A., & Ellis, M.J. (2019). Bioprocess design considerations for cultured meat production with a focus on the expansion bioreactor. Frontiers in Sustainable Food Systems, 3. https://doi.org/10.3389/fsufs.2019.00044
  4. Aragão, C., Gonçalves, A.T., Costas, B., Azeredo, R., Xavier, M.J., & Engrola, S. (2022). Alternative proteins for fish diets: Implications beyond growth. Animals, 12(9), 1211. https://doi.org/10.3390/ani12091211
  5. Batish, I., Zarei, M., Nitin, N., & Ovissipour, R. (2022). Evaluating the potential of marine invertebrate and insect protein hydrolysates to reduce fetal bovine serum in cell culture media for cultivated fish production. Biomolecules, 12(11), 1697. https://doi.org/10.3390/biom12111697
  6. Ben-Arye, T., & Levenberg, S. (2019). Tissue engineering for clean meat production. Frontiers in Sustainable Food Systems, 3. https://doi.org/10.3389/fsufs.2019.00046
  7. Ben-Arye, T., Shandalov, Y., Ben-Shaul, S., Landau, S., Zagury, Y., Ianovici, I., Lavon, N., & Levenberg, S. (2020). Textured soy protein scaffolds enable the generation of three-dimensional bovine skeletal muscle tissue for cell-based meat. Nature Food, 1(4), 210–220. https://doi.org/10.1038/s43016-020-0046-5
  8. Benjaminson, M.A., Gilchriest, J.A., & Lorenz, M. (2002). In vitro edible muscle protein production system (MPPS): Stage 1, fish. Acta Astronautica, 51(12). https://doi.org/10.1016/ S0094-5765(02)00033-4
  9. Bodiou, V., Moutsatsou, P., & Post, M.J. (2020). Microcarriers for upscaling cultured meat production. Frontiers in Nutrition, 7. https://doi.org/10.3389/fnut.2020.00010
  10. Bomkamp, C., Skaalure, S.C., Fernando, G.F., Ben‐Arye, T., Swartz, E.W., & Specht, E.A. (2022a). Scaffolding biomaterials for 3D cultivated meat: Prospects and challenges. Advanced Science, 9(3). https://doi.org/10.1002/advs.202102908
  11. Bryant, C., & Barnett, J. (2018). Consumer acceptance of cultured meat: A systematic review. In Meat Science (Vol. 143). https://doi.org/10.1016/j.meatsci.2018.04.008
  12. Bryant, C.J. (2020). Culture, meat, and cultured meat. Journal of Animal Science, 98(8). https://doi.org/10.1093/jas/skaa172
  13. Buchenauer, A., Hofmann, M.C., Funke, M., Büchs, J., Mokwa, W., & Schnakenberg, U. (2009). Micro-bioreactors for fed-batch fermentations with integrated online monitoring and microfluidic devices. Biosensors and Bioelectronics, 24(5), 1411–1416. https://doi.org/10.1016/j.bios. 2008.08.043
  14. Chauvet, D.J. (2018). Should culture meat be refused in the name of animal dignity? Ethical Theory and Moral Practice, 21(2), 387–411. https://doi.org/10.1007/s10677-018-9888-4
  15. Chen, X.-Y., Chen, J.-Y., Tong, X.-M., Mei, J.-G., Chen, Y.-F., & Mou, X.-Z. (2020). Recent advances in the use of microcarriers for cell cultures and their ex vivo and in vivo applications. Biotechnology Letters, 42(1), 1–10. https://doi.org/10.1007/s10529-019-02738-7
  16. Choudhury, D., Tseng, T.W., & Swartz, E. (2020). The business of cultured meat. In Trends in Biotechnology, 38(6), 573–577. https://doi.org/10.1016/j.tibtech.2020.02.012
  17. Chriki, S., & Jean-François, H. (2020). The myth of cultured meat: A review. Frontiers in Nutrition, 7. https://doi.org/10.3389/fnut.2020.00007
  18. Das, R., Roosloot, R., van Santen, P., & de Bruijn, J. (2014). Novel process control in a closed system bioreactor for culture of adherent cells. Cytotherapy, 16(4), S106–S107. https://doi.org/10.1016/j.jcyt.2014.01.394
  19. Djisalov, M., Knežić, T., Podunavac, I., Živojević, K., Radonic, V., Knežević, N.Ž., Bobrinetskiy, I., & Gadjanski, I. (2021). Cultivating multidisciplinarity: Manufacturing and sensing challenges in cultured meat production. Biology, 10(3), 204. https://doi.org/10.3390/biology10030204
  20. Edelman, P.D., McFarland, D.C., Mironov, V.A., & Matheny, J.G. (2005). Commentary: In Vitro -cultured meat production. Tissue Engineering, 11(5–6), 659–662. https://doi.org/10.1089/ten. 2005.11.659
  21. Eibl, R., & Eibl, D. (2008). Design of bioreactors suitable for plant cell and tissue cultures. Phytochemistry Reviews, 7(3), 593–598. https://doi.org/10.1007/s11101-007-9083-z
  22. Fraeye, I., Kratka, M., Vandenburgh, H., & Thorrez, L. (2020). Sensorial and nutritional aspects of cultured meat in comparison to traditional meat: Much to be inferred. Frontiers in Nutrition, 7. https://doi.org/10.3389/fnut.2020.00035
  23. Gaydhane, M.K., Mahanta, U., Sharma, C.S., Khandelwal, M., & Ramakrishna, S. (2018). Cultured meat: state of the art and future. Biomanufacturing Reviews, 3(1), 1. https://doi.org/10.1007/s40898-018-0005-1
  24. Ge, C., Selvaganapathy, P.R., & Geng, F. (2023). Advancing our understanding of bioreactors for industrial-sized cell culture: health care and cellular agriculture implications. American Journal of Physiology-Cell Physiology, 325(3), C580–C591. https://doi.org/10.1152/ajpcell.00408.2022
  25. Genovese, N.J., Domeier, T.L., Telugu, B.P.V.L., & Roberts, R.M. (2017). Enhanced development of skeletal myotubes from porcine induced pluripotent stem cells. Scientific Reports, 7. https://doi.org/10.1038/srep41833
  26. Guan, X., Lei, Q., Yan, Q., Li, X., Zhou, J., Du, G., & Chen, J. (2021). Trends and ideas in technology, regulation and public acceptance of cultured meat. Future Foods, 3, 100032. https://doi.org/10.1016/j.fufo.2021.100032
  27. Hamdan, M.N., Ramli, M.A., Zaman Huri, N.M.F., Abd Rahman, N.N.H., & Abdullah, A. (2021). Will Muslim consumers replace livestock slaughter with cultured meat in the market? In Trends in Food Science and Technology, 109. https://doi.org/10.1016/j.tifs.2021.01.034
  28. Hamzeh, A., Rezaei, M., Khodabandeh, S., Motamedzadegan, A., & Noruzinia, M. (2018). Antiproliferative and antioxidative activities of cuttlefish (Sepia pharaonis) protein hydrolysates as affected by degree of hydrolysis. Journal of Food Measurement and Characterization, 12(2), 721–727. https://doi.org/10.1007/s11694-017-9685-0
  29. Hanga, M.P., Ali, J., Moutsatsou, P., de la Raga, F.A., Hewitt, C.J., Nienow, A., & Wall, I. (2020). Bioprocess development for scalable production of cultivated meat. Biotechnology and Bioengineering, 117(10), 3029–3039. https://doi.org/10.1002/bit.27469
  30. Hong, T.K., Shin, D.-M., Choi, J., Do, J.T., & Han, S.G. (2021). Current issues and technical advances in cultured meat production: A review. Food Science of Animal Resources, 41(3), 355–372. https://doi.org/10.5851/kosfa.2021.e14
  31. Ibidhi, R., & Ben Salem, H. (2020). Water footprint of livestock products and production systems: a review. Animal Production Science, 60(11), 1369. https://doi.org/10.1071/AN17705
  32. Ikasari, B.N., Alfarizi, S., Fauziyah, Sh., Wardhani, P., Soegeng Soegijanto, A., & Sucipto, T. (2022). Effect of fetal bovine serum concentration towards vero cells growth on culture in DMEM medium. Jurnal Teknologi Laboratorium, 11(2), 73–77. https://doi.org/10.29238/ teknolabjournal.v11i2.313
  33. Jairath, G., Mal, G., Gopinath, D., & Singh, B. (2021). A holistic approach to access the viability of cultured meat: A review. Trends in Food Science & Technology, 110, 700–710. https://doi.org/10.1016/j.tifs.2021.02.024
  34. Jochems, C.E.A., van der Valk, J.B.F., Stafleu, F.R., & Baumans, V. (2002). The use of fetal bovine serum: Ethical or scientific problem? Alternatives to Laboratory Animals, 30(2), 219–227. https://doi.org/10.1177/026119290203000208
  35. Kim, Cho H., Lee, H.J., Jung, D.Y., Kim, M., Jung, H.Y., Hong, H., Choi, Y.S., In Yong, H., & Jo, Ch. (2023). Evaluation of fermented soybean meal and edible insect hydrolysates as potential serum replacement in pig muscle stem cell culture. Food Bioscience, 54, 102923. https://doi.org/10.1016/j.fbio.2023.102923
  36. Kimura, A., Yoshida, F., Ueno, M., & Taguchi, M. (2021). Application of radiation crosslinking technique to development of gelatin scaffold for tissue engineering. Radiation Physics and Chemistry, 180, 109287. https://doi.org/10.1016/j.radphyschem.2020.109287
  37. Kröncke, N., & Benning, R. (2023). Influence of dietary protein content on the nutritional composition of mealworm larvae (Tenebrio molitor). Insects, 14(3), 261. https://doi.org/ 10.3390/insects14030261
  38. Lee, D.Y., Lee, S.Y., Yun, S.H., Jeong, J.W., Kim, J.H., Kim, H.W., & Choi, J.S. (2022). Review of the current research on fetal bovine serum and the development of cultured meat. Food Science of Animal Resources, 42(5), 775–99. https://doi.org/10.5851/kosfa.2022.e46
  39. Lee, D.K., Kim, M., Jeong, J., Lee, Y.S., Yoon, J.W., An, M.J., Jung, H.Y., Kim, C.H., Ahn, Y., Choi, K.H., Jo, C., & Lee, C.K. (2023). Unlocking the potential of stem cells: Their crucial role in the production of cultivated meat. In Current Research in Food Science, 7. https://doi.org/10.1016/j.crfs.2023.100551
  40. Lee, D.Y., Lee, S.Y., Jung, J.W., Kim, J.H., Oh, D.H., Kim, H.W., Kang, J.H., Choi, J.S., Kim, G.-D., Joo, S.-T., & Hur, S.J. (2023). Review of technology and materials for the development of cultured meat. Critical Reviews in Food Science and Nutrition, 63(27), 8591–8615. https://doi.org/10.1080/10408398.2022.2063249
  41. López-Martínez, M.I., Miguel, M., & Garcés-Rimón, M. (2022). Protein and sport: Alternative sources and strategies for bioactive and sustainable sports nutrition. Frontiers in Nutrition, 9. https://doi.org/10.3389/fnut.2022.926043
  42. Lu, H., Ying, K., Shi, Y., Liu, D., & Chen, Q. (2022). Bioprocessing by decellularized scaffold biomaterials in cultured meat: A review. Bioengineering, 9(12), 787. https://doi.org/10.3390/ bioengineering9120787
  43. Lupatini, A.L., Colla, L.M., Canan, C., & Colla, E. (2017). Potential application of microalga Spirulina platensis as a protein source. Journal of the Science of Food and Agriculture, 97(3), 724–732. https://doi.org/10.1002/jsfa.7987
  44. Manzocchi, E., Guggenbühl, B., Kreuzer, M., & Giller, K. (2020). Effects of the substitution of soybean meal by spirulina in a hay-based diet for dairy cows on milk composition and sensory perception. Journal of Dairy Science, 103(12), 11349–11362. https://doi.org/10.3168/jds.2020-18602
  45. Mattick, C.S., Landis, A.E., Allenby, B.R., & Genovese, N.J. (2015). Anticipatory life cycle analysis of in vitro biomass cultivation for cultured meat production in the United States. Environmental Science and Technology, 49(19), 11941–11949. https://doi.org/10.1021/ ACS.EST.5B01614
  46. Mekonnen, M.M., & Hoekstra, A.Y. (2012). A global assessment of the water footprint of farm animal products. Ecosystems, 15(3). https://doi.org/10.1007/s10021-011-9517-8
  47. Minghao, N., Shima, A., & Takeuchi, Sh. (2023). Centimeter-scale perfusable cultured meat with densely packed, highly aligned muscle fibers via hollow fiber bioreactor. Biorxiv (Preprint).
  48. Mirzakhani, M.K., Abedian Kenari, A., & Motamedzadegan, A. (2018). Prediction of apparent protein digestibility by in vitro pH-stat degree of protein hydrolysis with species-specific enzymes for Siberian sturgeon (Acipenser baeri, Brandt 1869). Aquaculture, 496, 73–78. https://doi.org/10.1016/j.aquaculture.2018.07.014
  49. Moritz, M.S.M., Verbruggen, S.E.L., & Post, M.J. (2015). Alternatives for large-scale production of cultured beef: A review. Journal of Integrative Agriculture, 14(2), 208–216. https://doi.org/10.1016/S2095-3119(14)60889-3
  50. Mullenix, G.J., Greene, E.S., Emami, N.K., Tellez-Isaias, G., Bottje, W.G., Erf, G.F., Kidd, M.T., & Dridi, S. (2021). Spirulina platensis inclusion reverses circulating pro-inflammatory (Chemo) cytokine profiles in broilers fed low-protein diets. Frontiers in Veterinary Science, 8. https://doi.org/10.3389/fvets.2021.640968
  51. Munteanu, C., Mireşan, V., Răducu, C., Ihuţ, A., Uiuiu, P., Pop, D., Neacşu, A., Cenariu, M., & Groza, I. (2021). Can cultured meat be an alternative to farm animal production for a sustainable and healthier lifestyle? Frontiers in Nutrition, 8. https://doi.org/10.3389/fnut.2021.749298
  52. Musyoka, S.N., Liti, D.M., Ogello, E., & Waidbacher, H. (2019). Utilization of the earthworm, Eisenia fetida (Savigny, 1826) as an alternative protein source in fish feeds processing: A review. Aquaculture Research, 50(9), 2301–2315. https://doi.org/10.1111/are.14091
  53. Nakamura, M., Tomochi, H., Andoh, K., Nishimori, A., Suda, Y., Matsuura, Y., & Iwamaru, Y. (2022). Inspection of commercially available fetal bovine Sera collected between 2017 and 2021 for the contamination of bovine viral diarrhea virus. Journal of the Japan Veterinary Medical Association, 75(7), e139–e144. https://doi.org/10.12935/jvma.75.e139
  54. Negulescu, P.G., Risner, D., Spang, E.S., Sumner, D., Block, D., Nandi, S., & McDonald, K.A. (2023). Techno‐economic modeling and assessment of cultivated meat: Impact of production bioreactor scale. Biotechnology and Bioengineering, 120(4), 1055–1067. https://doi.org/10.1002/ bit.28324
  55. Newton, P., & Blaustein-Rejto, D. (2021). Social and economic opportunities and challenges of plant-based and cultured meat for rural producers in the US. Frontiers in Sustainable Food Systems, 5. https://doi.org/10.3389/fsufs.2021.624270
  56. Ng, S., & Kurisawa, M. (2020). Integrating biomaterials and food biopolymers for cultured meat production. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3692010
  57. Obom, K.M., Cummings, P.J., Ciafardoni, J.A., Hashimura, Y., & Giroux, D. (2014). Cultivation of mammalian cells using a single-use pneumatic bioreactor system. Journal of Visualized Experiments, 92. https://doi.org/10.3791/52008
  58. Ong, K.J., Tejeda-Saldana, Y., Duffy, B., Holmes, D., Kukk, K., & Shatkin, J.A. (2023). Cultured meat safety research priorities: Regulatory and governmental perspectives. Foods, 12(14). https://doi.org/10.3390/foods12142645
  59. Ozhava, D., Bhatia, M., Freman, J., & Mao, Y. (2022). Sustainable cell sources for cultivated meat. Journal of Biomedical Research & Environmental Sciences, 3(12). https://doi.org/ 10.37871/jbres1607
  60. Peng, C.-A., & Palsson, B.Ø. (2000). Cell growth and differentiation on feeder layers is predicted to be influenced by bioreactor geometry. Biotechnology and Bioengineering, 50(5), 479–492. https://doi.org/10.1002/(SICI)1097-0290(19960605)50
  61. Penn, J. (2018). Cultured meat: Lab-grown beef and regulating the future meat market. UCLA Journal of Environmental Law and Policy, 36(1). https://doi.org/10.5070/l5361039902
  62. Post, M.J. (2012). Cultured meat from stem cells: Challenges and prospects. In Meat Science, 92(3). https://doi.org/10.1016/j.meatsci.2012.04.008
  63. Post, M.J., Levenberg, S., Kaplan, D.L., Genovese, N., Fu, J., Bryant, C.J., Negowetti, N., Verzijden, K., & Moutsatsou, P. (2020). Scientific, sustainability and regulatory challenges of cultured meat. Nature Food, 1(7), 403–415. https://doi.org/10.1038/s43016-020-0112-z
  64. Prasad, Sh., Prakash, C., Rohit, K., Karunakaran, M., Santra, A., & Subrata, K.D. (2018). Development of cattle embryo through in vitro technique using epidermal growth factor as a media supplement. International Journal of Bio-resource and Stress Management, 9(6), 691–94. https://doi.org/10.23910/IJBSM/2018.9.6.1923
  65. Roncolini, A., Milanović, V., Aquilanti, L., Cardinali, F., Garofalo, C., Sabbatini, R., Clementi, F., Belleggia, L., Pasquini, M., Mozzon, M., Foligni, R., Federica Trombetta, M., Haouet, M.N., Serena Altissimi, M., Di Bella, S., Piersanti, A., Griffoni, F., Reale, A., Niro, S., & Osimani, A. (2020). Lesser mealworm (Alphitobius diaperinus) powder as a novel baking ingredient for manufacturing high-protein, mineral-dense snacks. Food Research International, 131, 109031. https://doi.org/10.1016/j.foodres.2020.109031
  66. Schaefer Owen, G., & Savulescu, J. (2014). The ethics of producing in vitro meat. Journal of Applied Philosophy, 31(2), 188–202. https://doi.org/10.1111/japp.12056
  67. Seah, J.S.H., Singh, S., Tan, L.P., & Choudhury, D. (2022). Scaffolds for the manufacture of cultured meat. Critical Reviews in Biotechnology, 42(2), 311–323. https://doi.org/10.1080/ 07388551.2021.1931803
  68. Shaviklo, A.R., Moradinezhad, N., Abolghasemi, S.J., Motamedzadegan, A., Kamali-Damavandi, N., & Rafipour, F. (2016). Product optimization of fish burger containing tuna protein isolates for better sensory quality and frozen storage stability. Turkish Journal of Fisheries and Aquatic Sciences, 16(4). https://doi.org/10.4194/1303-2712-v16_4_20
  69. Smetana, S., Mathys, A., Knoch, A., & Heinz, V. (2015). Meat alternatives: life cycle assessment of most known meat substitutes. International Journal of Life Cycle Assessment, 20(9). https://doi.org/10.1007/s11367-015-0931-6
  70. Stephens, N., Di Silvio, L., Dunsford, I., Ellis, M., Glencross, A., & Sexton, A. (2018). Bringing cultured meat to market: Technical, socio-political, and regulatory challenges in cellular agriculture. In Trends in Food Science and Technology, https://doi.org/10.1016/j.tifs. 2018.04.010
  71. Stout, A.J., Zhang, X., Letcher, S.M., Rittenberg, M.L., Shub, M., Chai, K.M., Kaul, M., & Kaplan, D.L. (2024). Engineered autocrine signaling eliminates muscle cell FGF2 requirements for cultured meat production. Cell Reports Sustainability, 1(1), 100009. https://doi.org/10.1016/j.crsus.2023.100009
  72. Tabarestani, Shahiri, H., Maghsoudlou, Y., Motamedzadegan, A., & Sadeghi Mahoonak, A.R. (2010). Optimization of physico-chemical properties of gelatin extracted from fish skin of rainbow trout (Onchorhynchus mykiss). Bioresource Technology, 101(15), 6207–14. https://doi.org/10.1016/j.biortech.2010.02.071
  73. Taheri, A., Abedian Kenari, A., Motamedzadegan, A., & Habibi Rezaie, M. (2011). Optimization of goldstripe sardine (Sardinella gibbosa) protein hydrolysate using Alcalase® 2.4L by response surface methodology Optimización de hidrolisato de proteína de Sardinela dorada (Sardinella gibbosa) usando Alcalase® 2.4L a través de RSM. CyTA. Journal of Food, 9(2), 114–120. https://doi.org/10.1080/19476337.2010.484551
  74. Tahir, I., & Floreani, R. (2022). Dual-crosslinked alginate-based hydrogels with tunable mechanical properties for cultured meat. Foods, 11(18), 2829. https://doi.org/10.3390/ foods11182829
  75. Tuomisto, H.L., & Teixeira de Mattos, M.J. (2011). Environmental impacts of cultured meat production. Environmental Science & Technology, 45(14), 6117–6123. https://doi.org/10.1021/ es200130u
  76. Tzachor, A., Smidt-Jensen, A., Ramel, A., & Geirsdóttir, M. (2022). Environmental impacts of large-scale spirulina (Arthrospira platensis) production in Hellisheidi Geothermal Park Iceland: Life cycle assessment. Marine Biotechnology, 24(5), 991–1001. https://doi.org/10.1007/s10126-022-10162-8
  77. Wang, J., Ding, X., & Zhou, G. (2022). Cutting-edge tissue engineering strategies for cultured meat. Food Materials Research, 2(1), 1–5. https://doi.org/10.48130/FMR-2022-0020
  78. Wang, Y., Ji, H., He, L., Niu, Y., Zhang, Y., Liu, Y., Tian, Y., Liu, X., Li, H., Kang, X., Gao, Y., & Li, Z. (2024). Establishment and analysis of immortalized chicken skeletal muscle satellite cell lines1. Journal of Integrative Agriculture. https://doi.org/10.1016/j.jia.2024.01.034
  79. Wang, Y., Zou, L., Liu, W., & Chen, X. (2023). An overview of recent progress in engineering three-dimensional scaffolds for cultured meat production. Foods, 12(13), 2614. https://doi.org/10.3390/foods12132614
  80. Yeo, D., Kiparissides, A., Cha, J.M., Aguilar-Gallardo, C., Polak, J.M., Tsiridis, E., Pistikopoulos, E. N., & Mantalaris, A. (2013). Improving embryonic stem cell expansion through the combination of perfusion and bioprocess model design. PLoS ONE, 8(12), e81728. https://doi.org/10.1371/journal.pone.0081728
  81. Young, Ashlyn T., White, O.C., & Daniele, M.A. (2020). Rheological properties of coordinated physical gelation and chemical crosslinking in gelatin methacryloyl (GelMA) hydrogels. Macromolecular Bioscience, 20(12). https://doi.org/10.1002/mabi.202000183
  82. Yu, I., Choi, J., Kim, M.K., & Kim, M.J. (2023). The comparison of commercial serum-free media for Hanwoo satellite cell proliferation and the role of fibroblast growth factor 2. Food Science of Animal Resources, 43(6), 1017–30. https://doi.org/10.5851/kosfa.2023.e68
  83. Zhang, G., Zhao, X., Li, X., Du, G., Zhou, J., & Chen, J. (2020). Challenges and possibilities for bio-manufacturing cultured meat. Trends in Food Science & Technology, 97, 443–450. https://doi.org/10.1016/j.tifs.2020.01.026

 

 

CAPTCHA Image