با همکاری انجمن علوم و صنایع غذایی ایران

نوع مقاله : مقاله پژوهشی لاتین

نویسنده

شرکت صنعت پویای ترنج، نوشهر، مازندران.

چکیده

مقدار درجه انتقال حرارت در ناحیه سرد دیسپرسیون نشاسته 5/3 % طی استرلیزاسیون در قوطی دارای 10% سرفضا شبیه سازی شد. از نرم‌افزار محاسبات عددی COMSOL ورژن 1/4 استفاده شد و معادلات مربوط به انرژی، جابه‌جایی، و پایستگی با استفاده از روش حجم محدود حل شدند. اثر هندسه قوطی (استوانه با ابعاد 10× 6/6 × 10 سانتی‌متر و مخروط با ارتفاع 10 سانتی‌متر و قطر 5 سانتی‌متر به شکل عمودی رو به بالا و رو به پایین) بر پارامتر نفوذ حرارتی (j) و کشندگی میکروبی (L) در ناحیه سرد بررسی شد. درجه حرارت ناحیه سرد توسط یک ترموکوپل پایش و با نتایج پیش‌بینی شده نرم‌افزار مقایسه شد. مشخص شد که قوطی مخروطی شکل سریعترین انتقال حرارت طی استرلیزاسیون را داراست. همچنین هندسه قوطی اثر معنی‌داری بر شکل، موقعیت، دمای نهایی، پارامتر j، L و F ناحیه سرد دارد.

کلیدواژه‌ها

عنوان مقاله [English]

Numerical Calculation F-value and Lethality of Non-Newtonian Food Fluid during Sterilization based on Can Geometry

نویسنده [English]

  • Azadeh Ranjbar Nedamani

Pouya Torang Industry Co., Noshahr, Mazandaran, Iran.

چکیده [English]

Amount of heat transfer temperature was stimulated in the slowest heating zone of 3.5% starch dispersion during canning sterilization with 10% headspace. The computational fluid dynamics software COMSOL 4.1 was used and governing equations for energy, momentum, and continuity were computed using a finite volume method. The effect of container geometry (cylinders with 6*10cm and 10*6cm dimensions, and cones with 10 cm height and 5 cm radius on 0 and 180° position) on heat penetration parameter (j) and microbial lethality (L) in slowest heating point were investigated. The temperature of the slowest heating zone was monitored by a thermocouple and then compared with the predicted temperature by software. It was determined that cone-shaped container had the fastest heat transfer during sterilization. Also, container geometry has a significant effect on slowest heating zone shape, position, final temperature, j, L, and F-value.

کلیدواژه‌ها [English]

  • Microbial lethality
  • Starch dispersion
  • sterilization
  • Container geometry
  • Heat penetration parameter
  1. Abdul Ghani, A. G. and M. M. Farid (2006). "Using the computational fluid dynamics to analyze the thermal sterilization of solid–liquid food mixture in cans." Innovative Food Science & Emerging Technologies 7(1-2): 55-61.
  2. Barnes, H. A., J. F. Hutton and K. Walters (1989). An introduction to rheology, Elsevier.
  3. Buckow, R., P. Baumann, S. Schroeder and K. Knoerzer (2011). "Effect of dimensions and geometry of co-field and co-linear pulsed electric field treatment chambers on electric field strength and energy utilisation." Journal of Food Engineering 105(3): 545-556.
  4. Datta, A. and A. Teixeira (1988). "Numerically predicted transient temperature and velocity profiles during natural convection heating of canned liquid foods." Journal of Food Science 53(1): 191-195.
  5. Dimou, A., N. G. Stoforos and S. Yanniotisa (2011). "CFD simulations in still cans filled with solid food items in liquid." Procedia Food Science 1: 1216-1222.
  6. Dimou, A. and S. Yanniotis (2011). "3D numerical simulation of asparagus sterilization in a still can using computational fluid dynamics." Journal of food engineering 104(3): 394-403.
  7. Erdoğdu, F. (2008). "A review on simultaneous determination of thermal diffusivity and heat transfer coefficient." Journal of Food Engineering 86(3): 453-459.
  8. Erdogdu, F. and M. Tutar (2012). "A computational study for axial rotation effects on heat transfer in rotating cans containing liquid water, semi-fluid food system and headspace." International Journal of Heat and Mass Transfer 55(13-14): 3774-3788.
  9. Farid, M. and A. G. Abdul Ghani (2004). "A new computational technique for the estimation of sterilization time in canned food." Chemical Engineering and Processing: Process Intensification 43(4): 523-531.
  10. Farid, M. and A. A. Ghani (2004). "A new computational technique for the estimation of sterilization time in canned food." Chemical Engineering and Processing: Process Intensification 43(4): 523-531.
  11. Ghani, A. A., M. Farid and X. Chen (2002). "Numerical simulation of transient temperature and velocity profiles in a horizontal can during sterilization using computational fluid dynamics." Journal of Food Engineering 51(1): 77-83.
  12. Ghani, A. A., M. Farid, X. Chen and P. Richards (1999). "Numerical simulation of natural convection heating of canned food by computational fluid dynamics." Journal of Food Engineering 41(1): 55-64.
  13. Kannan, A. and P. C. G. Sandaka (2008). "Heat transfer analysis of canned food sterilization in a still retort." Journal of Food Engineering 88(2): 213-228.
  14. Karaduman, M., R. Uyar and F. Erdogdu (2012). "Toroid cans – An experimental and computational study for process innovation." Journal of Food Engineering 111(1): 6-13.
  15. KUMAR, A., M. Bhattacharya and J. BLAYLOCK (1990). "Numerical simulation of natural convection heating of canned thick viscous liquid food products." Journal of Food Science 55(5): 1403-1411.
  16. Kumar, V., A. P. Wee, S. Birla, J. Subbiah and H. Thippareddi (2012). "A 3-D computational fluid dynamics model for forced air cooling of eggs placed in trays." Journal of Food Engineering 108(3): 480-492.
  17. Lagarrigue, S. and G. Alvarez (2001). "The rheology of starch dispersions at high temperatures and high shear rates: a review." Journal of Food Engineering 50(4): 189-202.
  18. Ranjbar, A., Z. Aman Mohammad, P. Mehdi, K. Mahdi and Y. Maghsoudlou (2016). "Numerical Study of the Effects of Can Fill Level on the Heat Transfer Pattern in Starch Dispersion " Innovative Food Technologies 3(11): 1-11.
  19. Ranjbar, A., A. M. Ziaiifar, M. Parvini, M. Kashaninejad and Y. Maghsoudlou (2015). "Numerical Study of Starch Concentration and Filling Initial Temperature on Cold Area changes in Canned Starch-based Food." Iranian Food Science and Technology Research Journal 13(1): 129-140.
  20. Sarghini, F. and F. Erdogdu (2016). "A computational study on heat transfer characteristics of particulate canned foods during end-over-end rotational agitation: Effect of rotation rate and viscosity." Food and Bioproducts Processing 100: 496-511.
  21. Smout, C., I. Ávila, A. M. L. Van Loey, M. E. G. Hendrickx and C. Silva (2000). "Influence of rotational speed on the statistical variability of heat penetration parameters and on the non-uniformity of lethality in retort processing." Journal of Food Engineering 45(2): 93-102.
  22. Smout, C., A. V. Loey, M. Hendrickx and J. Beirlant (2000). "Statistical Variability Of Heat Penetration Parameters in Relation to Process Design." Journal of Food Science 65(4): 685-693.
  23. Tattiyakul, J., M. A. Rao and A. K. Datta (2002). "Heat Transfer to Three Canned Fluids of Different Thermo-Rheological Behaviour Under Intermittent Agitation." Food and Bioproducts Processing 80(1): 20-27.
  24. Tutar, M. and F. Erdogdu (2012). "Numerical simulation for heat transfer and velocity field characteristics of two-phase flow systems in axially rotating horizontal cans." Journal of Food Engineering 111(2): 366-385.
  25. Varma, M. N. and A. Kannan (2005). "Enhanced food sterilization through inclination of the container walls and geometry modifications." International Journal of Heat and Mass Transfer 48(18): 3753-3762.
  26. Varma, M. N. and A. Kannan (2006). "CFD studies on natural convective heating of canned food in conical and cylindrical containers." Journal of Food Engineering 77(4): 1024-1036.
  27. Wang, L. and D.-W. Sun (2003). "Recent developments in numerical modelling of heating and cooling processes in the food industry—a review." Trends in Food Science & Technology 14(10): 408-423.
  28. WIESE, K. L. and K. F. WIESE (1992). "A comparison of numerical techniques to calculate broken line heating factors of a thermal process." Journal of food processing and preservation 16(5): 301-312.
  29. Yang, W. and M. Rao (1998). "Transient natural convection heat transfer to starch dispersion in a cylindrical container: numerical solution and experiment." Journal of Food Engineering 36(4): 395-415.
CAPTCHA Image