

Research Article Vol. 20, No. 3, Aug.-Sep. 2024, p. 1-15

The Effect of Xanthan-based Edible Coatings Enriched with Oleic Acid on the Storage Quality and Antioxidant Properties of Sapodilla (*Manilkara zapota*) Fruit

D. Rezakhani Nejad¹, A. Mirzaalian Dastjerdi², S. Rastegar²

1 and 2- Ph.D. Student and Associate Professor, Department of Horticultural Sciences, Faculty of Agriculture and Natural Resources, University of Hormozgan, Bandar Abbas, Iran, respectively. (*- Corresponding Author Email: rastegarhort@gmail.com)

Received:	01.01.2024	How to cite this article:
Revised:	15.02.2024	Rezakhani Nejad, D., Mirzaalian Dastjerdi, A., & Rastegar, S. (2024). The effect of
Accepted:	28.02.2024	xanthan-based edible coatings enriched with oleic acid on the storage quality and
Available Online:	01.06.2024	antioxidant properties of sapodilla (Manilkara zapota) fruit. Iranian Food Science and
		Technology Research Journal, 20(3), 1-15. https://doi.org/10.22067/ifstrj.2024.
		86132.1307

Abstract

The sapodilla fruit has a limited shelf life due to its perishability and rapid moisture loss. The application of edible coatings has attracted much interest because they are effective in prolonging the shelf life of fruits. This study aims to evaluate the effectiveness of an edible coating made from xanthan gum (XG) (0.1% and 0.2%) combined with oleic acid (Ol) (1%) in prolonging the shelf life of sapodilla fruit at 8 ± 1 °c and a relative humidity (RH) of 85-90%. Weight loss was significantly reduced in the treated fruits, with the minimum weight loss observed in the Xan 0.2% + Ol treatment. Except for the Ol treatment, the other treatments showed a higher level of firmness compared to the control. At the end of the experiment, the treatments significantly reduced fruit respiration. The treated fruits also showed significantly increased antioxidant capacity and higher levels of ascorbic acid compared to the control. The lowest TSS (22.8%) level was noted in the Xan 0.2 + Ol treatment. Moreover, the results showed that fruit treated with Xan 0.1% + Ol coating exhibited higher activity in the superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) enzymes compared to the fruit treated with Xan 0.2 + Ol and Xan 0.1% + Ol demonstrated the highest overall quality compared to the control and other treatments. Therefore, the application of these treatments is recommended for maintaining the quality of sapodilla fruit.

Keywords: Coatings, Oleic acid, Sapodilla, Storage, Xanthan

Introduction

Sapodilla, *Manilkara zapota*, is the most well-known and the most widely used fruit of the Sapotaceae family. Sapodilla is a rich source of nutrients (carbohydrates, organic acids, proteins, amino acids), minerals (potassium, calcium, iron), and includes numerous bioactive compounds primarily composed of allergitannins, galotannins, phenolic acids, and flavonoids. Due to its rich phytochemical profile in both edible and nonedible parts, Sapodilla has various medicinal potential through different biological activities. Due to its perishability and quick moisture loss, the fruit of Sapodilla has a short shelf life, but post-harvest technologies can enhance fruit storage to some extent. There are several methods for preserving and improving the post-harvest life of fruits and vegetables, among which the use of biodegradable films and coatings is very promising (Khalil *et al.*, 2020). Since the edible coating is made from natural

©2024 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0).

materials, it is safe and suitable for human consumption (Paidari et al., 2021). Furthermore, edible coatings have many advantages, including the ability to form a semi-permeable barrier against gases and water vapor, help maintain firmness, add gloss to coated fruits while improving market acceptability, enhancing mechanical properties, and preventing the loss of volatile compounds (Galus & Kadzi'nska, 2015). Xanthan gum is extracellular high molecular weight an polysaccharide produced by Xanthomonas campestris bacteria and is one of the most important commercial microbial hydrocolloids used in the food industry as a thickening and stabilizing agent (Zheng et al., 2019). Xanthan gum-based edible coating is a long-chain polymeric substance containing polymeric functional groups that exhibit unique properties under specific conditions, which can improve the mechanical properties of biodegradable materials. Xanthan can improve the tensile behavior of starch layers without reducing their water absorption capacity and water vapor permeability (Sapper et al., 2019). Gelatincarboxymethyl cellulose (CMC) films with xanthan gum showed improved physical and mechanical properties (Nur Hazirah et al., composite film 2016). А of nanocapsules/xanthan gum can prolong the storage of freshly cut apples by reducing the initial respiration rate (Galindo-P'erez et al., 2015). Lipid-based coatings (oleic acid) hinder moisture transfer due to their relatively low polarity. Therefore, a new approach is proposed to increase the shelf life of perishable fruits with minimal processing (Md. Sharif et al., 2017; Mladenoska et al., 2012; Karunanayake et al., 2020; Mitelut et al., 2021). The content of oleic acid has been demonstrated to serve as an emulsifying agent and a base for preserving fruits (Butar-Butar et al., 2021). In a study by Setianingsih et al. (2023), a combination of palmitic, stearic, and oleic acids was employed in an emulsion, leading to enhanced appearance and prolonged shelf life of orange fruits.

Numerous studies have investigated the effectiveness of coatings in preserving the

quality of various fruits during storage. These studies have consistently shown positive results. For instance, in a study conducted by Wani et al. (2021), it was found that the use of Arabic gum, carrageenan, and xanthan gum combined with lemon grass essential oil proved to be effective in maintaining the quality parameters of strawberries during storage. This coating treatment demonstrated superior results compared to the control, indicating its potential for extending the shelf life and preserving the quality of strawberries. In another study, guava fruits were coated with a mixture of Arabic gum (10%), oleic acid (1%), and cinnamon oil (1%). This coating significantly delayed browning development in guava compared to other treatments, while preserving fruit firmness and reducing weight loss. Additionally, it prevented lipid peroxidation and electrolyte leakage at the end of the storage period, indicating its effectiveness in maintaining fruit quality (Vargas et al., 2006). Previous studies have extensively explored the use of fruit coatings; however, this research introduces an innovative approach by utilizing a combination of xanthan gum and oleic acid to preserve the quality of sapodilla fruits. To the best of our knowledge, there is no previous report on the application of this compound for maintaining the quality of sapodilla fruit. Therefore, this research represents the first investigation to assess the effects of xanthan gum and its combination with oleic acid on the shelf life of sapodilla.

Materials and Methods

Fruit Treatment and Edible Coating Preparation

For this study, mature stage fruits of the Alano variety of Sapodilla (Chico) were harvested from the Minab Agricultural Research Station. Immediately after harvest, the fruits were transported to the physiology laboratory. Healthy and uniform fruits were carefully selected for the experiment. The selected fruits were subjected to various experimental treatments, which included the application of edible coatings comprising xanthan gum at concentrations of 0.1% and 0.2%, along with oleic acid at a concentration of 1.0%. Following the application of the coatings, the treated fruits were stored at 8 ± 1 °c and a relative humidity of 90-85% for 10, 30, 20, and 40 days.

Weight Loss

The weight loss of the fruits was measured using a digital scale by weighing each individual fruit on the first day and at regular intervals (every 10 days). The percentage of weight loss was calculated using the following formula (Juhaimi *et al.*, 2012).

Weight loss (%) = [(Fruit initial weight-fruit weight at each sampling time)/Fruit initial weight] $\times 100$

Firmness

The firmness of the fruits was measured at two points in the middle section (without the peel). Two points on the surface of each fruit were selected and the firmness was reported in N (Juhaimi *et al.*, 2012).

Respiration

A specific weight of fruit was placed in a plastic container. The initial CO_2 level (D1) was measured during the first instance, and again after 20 minutes (D2), using a respirometer device called the STEP Respiratory Sensor. The respiration rate was expressed in mL/kg.h according to the following formula (Xing *et al.*, 2008).

 $RCO_2 = (D2-D1) \times 10^6 \times Volume of container/(Time \times Fruit weight)$

Total Antioxidant Activity

The antioxidant activity was calculated based on the method described by Brand-Williams *et al.* (1995), and the absorbance of the samples was measured using a microplate reader at 517 nanometers. The antioxidant activity was then calculated using the following formula.

Antioxidant activity (%)= $[1 - (Abs sample/(Abs control)] \times 100$

Soluble Solids Content

The soluble solids content of the fruit juice was measured in terms of the Brix^o using a digital refractometer (DBR95, Taiwan).

Ascorbic Acid Content

The ascorbic acid content was measured using a spectrophotometer (O'Grady *et al.*, 2014). The absorbance of the samples was read at 510 nanometers using a microplate reader instrument (Epoch, Bio Tek® Instruments, VT, USA).

Catalase

The measurement of catalase activity in the samples was performed using the method described by Chance & Maehly (1955). The absorbance at 240 nanometers was read using a UV-Visible spectrophotometer model UNICO 2150 for a duration of one minute.

Ascorbate Peroxidase (APX)

The enzyme activity was measured using the method described by Nakano & Asada (1981). The activity of this enzyme was measured at 290 nanometers for a duration of two minutes using a spectrophotometer. The enzyme activity was then calculated in terms of units per gram of fresh weight (U/g FW min) of the flesh or peel.

Superoxide Dismutase (SOD)

The SOD activity was measured using the method described by Giannopolitis & Ries (1977). The absorbance of the samples was read at 560 nanometers using a spectrophotometer. The activity of this enzyme was expressed as units per gram of fresh weight (U/g FW).

Results and Discussion

Weight Loss

The fruits covered with edible coatings exhibited lower weight loss compared to the control throughout the storage. At the end of the storage period, the Xan 0.2 % + Ol treatment had a significant reduction in fruit weight loss by 28.51% compared to the control (Fig. 1). Weight loss is an important indicator of fruit quality during the post-harvest stage and is influenced by transpiration due to differences in vapor pressure between the fruit and the environment (Yaman & Bayonidirli, 2002). It is also influenced by respiration and various physiological mechanisms (Juhaimi *et al.*, 2012). The application of an edible coating composed of chitosan and essential oils helps minimize water loss in fruits by reducing the rate of water vapor transmission. This coating acts as a barrier, effectively blocking the escape of water vapor and inhibiting excessive transpiration. By regulating the loss of moisture, the coating helps maintain the fruit's water content and prevents dehydration. The reduction in water vapor transmission rate achieved through the coating contributes to the preservation of fruit quality and freshness (Widyastuti et al., 2023). Similar results were obtained in the study conducted by Kumar et al. (2021). They found that a bilayer edible coating consisting of xanthan gum and beeswax on tomato resulted in increased shelf life and improved resistance to water vapor transmission.

Fig. 1. The interaction effect between treatments (Control, Xanthan 0.1 %, Xanthan 0.2 %, Oleic acid 1%, Xanthan 0.1 % + Oleic acid 1 %, and Xanthan 0.2 % + Oleic acid 1 %) and storage periods on the weight loss of sapodilla fruit during four periods (10 days) of storage at 8 ± 1°C and 85% relative humidity (RH)
The values represent mean ± SD from three replicates (n=3). Statistical analysis was performed using LSD test.

Firmness

Fruit firmness gradually decreased during storage (Fig. 2-A). The highest level of firmness was observed in the Xan 0.2 % + Oland Xan 0.1 % + Ol treatments, respectively (Fig. 2-B). Fruit firmness is an important parameter in fresh horticultural products, and it decreases as the storage time increases. The loss of fruit firmness is concurrent with changes that occur in the cell wall structure. Pectin substances are responsible for the integrity of fruits. They are the main components of the middle lamella and predominantly form the initial cell wall structure. The effects of coatings on fruits and

their storage conditions vary significantly, as evidenced by the considerable impact on fruit firmness. In the case of sapota fruits, the reduction in firmness can be attributed to several factors, including a decrease in cellular turgor pressure, the release of extracellular and vascular air, and the degradation and breakdown of cell walls (Shah et al., 2016). The addition of lipids to the polymer composition can increase the water repellency behavior of the coating and consequently reduce water permeability. Typically, the permeability values increase linearly with a decrease in the concentration of the essence (Sánchez-González et al.,

2010). In this regard, Vargas *et al.* (2006) reported that the combination of oleic acid with chitosan coating resulted in decreased

permeability and respiration rate due to surface solid density.

Fig. 2. The effect of storage periods and different coatings (Control, Xanthan 0.1%, Xanthan 0.2 %, Oleic acid 1%, Xanthan 0.1 % + Oleic acid, and Xanthan 0.2 % + Oleic acid) on the firmness of sapodilla fruit during four periods (10 days) of storage at 8 ± 1°C and 85% relative humidity (RH)
 The values represent mean ± SD from three replicates (n=3). Statistical analysis was performed using LSD test.

The values represent mean \pm 3D from the represents (i=3). Statistical analysis was performed using the values represent mean \pm 3D from the representation of the representa

Respiration

As shown in Fig. 3, the fruits treated with Xan 0.2 % + Ol and Xan 0.1 % + Ol showed the lowest respiration rate compared to other samples. Edible coatings could modify gas transfer (carbon dioxide, oxygen, and ethylene) and consequently delay respiration rate and physiological processes, thus extending the shelf life of fruits and vegetables. Furthermore,

previous studies have shown that the delay in respiration rate in fruits can be attributed to the inhibition of ethylene production (Hassan *et al.*, 2018). The results of this study were consistent with the findings reported by Naveed *et al.* (2024), who documented a significant reduction in the respiration rate of jujube fruits covered with xanthan gum coating.

6 Iranian Food Science and Technology Research Journal Vol. 20, No. 3, 2024

Fig. 3. The interaction effect between treatments (Control, Xanthan 0.1 %, Xanthan 0.2 %, Oleic acid 1%, Xanthan 0.1 % + Oleic acid, and Xanthan 0.2 % + Oleic acid) and storage periods on the respiration rate of sapodilla fruit during four periods (10 days) of storage at 8 ± 1°C and 85% relative humidity (RH)
The values represent mean ± SD from three replicates (n=3). Statistical analysis was performed using LSD test.

Total Antioxidant Activity

The fruits treated with Xan 0.1% + Ol exhibited the highest antioxidant activity, which was 5.23 times greater than the activity observed in the control (Fig. 4). Usually, the production of reactive oxygen species (ROS) increases during fruit ripening and storage, leading to oxidative stress and fruit decay. Reports have shown that an increase in total phenolic content correlates with an increase in antioxidant capacity (Etemadipoor et al., 2020). In this study, since the combined xanthan coating with oleic acid disrupts the ripening process, it results in higher antioxidant activity in the fruit. Additionally, several changes in vitamin content throughout the ripening process can influence antioxidant activity.

Ascorbic Acid Content

The highest content of ascorbic acid was observed in the fruit treated with Xan 0.1 % +

Ol (137.86 mg/100 g FW) compared to the control (100.41 mg/100 g FW) (Fig. 5). Ascorbic acid acts as an antioxidant in fruits and reduces fruit damage. This action is achieved through the elimination of free radicals produced during the ripening and oxidation process. The presence of oxygen can have a negative impact on the ascorbic acid content in fruits (Ayranci & Tunc, 2004). The presence of an edible coating on the fruit reduces the detrimental effects of oxygen, and this is accomplished through the performance of antioxidant compounds present in the coating and their role as a barrier against oxygen transfer (Oliveira *et al.*, 2017).

Fig. 4. The interaction effect between treatments (Control, Xanthan 0.1 %, Xanthan 0.2 %, Oleic acid 1%, Xanthan 0.1 % + Oleic acid, and Xanthan 0.2 % + Oleic acid) and storage periods on the total antioxidant activity of sapodilla fruit during four periods (10 days) of storage at 8 ± 1°C and 85% relative humidity (RH) The values represent mean ± SD from three replicates (n=3). Statistical analysis was performed using LSD test.

Fig. 5. The interaction effect between treatments (Control, Xanthan 0.1 %, Xanthan 0.2 %, Oleic acid 1%, Xanthan 0.1 % + Oleic acid, and Xanthan 0.2 % + Oleic acid) and storage periods on the ascorbic acid content of sapodilla fruit during four periods (10 days) of storage at 8 ± 1°C and 85% relative humidity (RH) The values represent mean ± SD from three replicates (n=3). Statistical analysis was performed using LSD test.

Fig. 6. The interaction effect between treatments (Control, Xanthan 0.1 %, Xanthan 0.2 %, Oleic acid 1%, Xanthan 0.1 % + Oleic acid, and Xanthan 0.2 % + Oleic acid) and storage periods on the total soluble solids (TSS) (A), and TSS/TA ratio (B-C) of sapodilla fruit during four periods (10 days) of storage at 8 ± 1°C and 85% relative humidity (RH)

The values represent mean \pm SD from three replicates (n=3). Statistical analysis was performed using LSD test.

Therefore, the combined xanthan coating with oleic acid enabled the fruits to retain higher levels of ascorbic acid compared to other treatments. This was accompanied by reduced oxygen permeability and limited moisture transfer from the fruit surface. In a similar report, Kumar et al. (2023) reported that an edible coating based on xanthan gum and pomegranate peel extract on mango fruit and enhanced the physical antioxidant properties of the fruit due to providing increased flexibility.

Total Soluble Solids and TSS/TA Ratio

The highest increase in TSS (27.2 %) was observed in the control fruit at the end of storage, while the lowest increase (22.80 %) was observed in fruits coated with Xan 0.2 % + Ol (Fig. 6-A). Generally, the TSS of fruits gradually accumulates during ripening. This phenomenon may be due to the hydrolysis reaction and conversion of starch into simple sugars. At the end of storage, the control fruit showed an increase in the TSS/TA ratio by 104.099 compared to its initial state, while the Xan 0.1 % + Ol coating resulted in a decrease in the TSS/TA ratio (Fig. 6-B). The TSS/TA ratio gradually increased during storage (Fig. 6-C). Etemadipoor et al. (2020) reported similar results on coated guava fruits with a combination of Arabic gum, oleic acid, and cinnamon essential oil.

Enzymatic Activity

The activity of CAT enzyme showed a significant increase within the first 20 days of storage. The highest enzyme activity was observed in fruits treated with a combination of 0.1% Xan + Ol during the second storage period (Fig. 7-A). Similar findings were reported for other fruits such as chickoo (Camargo *et al.*, 2016) and lychee (Zhang *et al.*, 2018). The peak increase in APX activity was observed on the tenth day in Xan 0.1 % + Ol treatment, followed by a decrease (Fig. 7-B). Our findings are consistent with a previous study conducted by Ali *et al.* (2021), who found that using a CMC

coating prior to storage preserved higher enzymatic activities and deactivated free radicals, reducing senescence in 'Kinnow' mandarin fruit under low-temperature conditions. The maximum activity of SOD enzyme in the coated fruits was observed 40 days after storage, and the peak in Xan 0.1 % + Ol-coated fruits was significantly higher than the control (P < 0.05) (Fig. 7-C). These results are similar to study conducted by Yuan et al. (2023), which examined the effect of a combined treatment of 1-methylcyclopropene and melatonin on the quality characteristics and active oxygen metabolism of stored mango fruit. An oxidative stress occurred throughout the entire storage period, characterized by an increase in active oxygen species such as superoxide, hydrogen peroxide, and hydroxyl radicals. The antioxidant system, which includes enzymes such as POD, SOD, CAT, and APX, plays an important role in preventing or reducing damage caused by ROS (Wang & Gao, 2013).

Conclusion

In conclusion, this study demonstrated that the application of edible coatings made from xanthan gum (XG) at concentrations of 0.1% and 0.2%, combined with oleic acid (Ol) at a concentration of 1%, effectively prolonged the shelf life of sapodilla fruit. The treated fruits exhibited reduced weight loss, with Xan 0.2% + Ol treatment showing the minimum weight loss. Additionally, the treated fruits maintained higher firmness levels compared to the control, except for the Ol treatment. The coatings also significantly reduced fruit respiration and enhanced antioxidant capacity, as well as increased levels of ascorbic acid. Xan 0.2% + Ol treatment resulted in the lowest total soluble solids (TSS) level. Furthermore, Xan 0.1% + Olcoating demonstrated higher activity levels in the superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) enzymes compared to Xan 0.2% + Ol coating and the control.

(C)

Fig. 7. The interaction effect between treatments (Control, Xanthan 0.1 %, Xanthan 0.2 %, Oleic acid 1%, Xanthan 0.1 % + Oleic acid, and Xanthan 0.2 % + Oleic acid) and storage periods on catalase (A), ascorbate peroxidase (B), and superoxide dismutase (C) activities of sapodilla fruit during four periods (10 days) of storage at 8 ± 1°C and 85% relative humidity (RH)

The values represent mean \pm SD from three replicates (n=3). Statistical analysis was performed using LSD test.

As a conclusion, Xan 0.2% + Ol and Xan 0.1% + Ol treatments exhibited the highest overall quality among the examined treatments. Given the challenges associated with postharvest preservation of this fruit, the application of these coatings presents a suitable method for extending the storage period and maintaining the quality.

Author Contributions

D. Rezakhani Nejad: Data curation, investigation, methodology, software, writingoriginal draft. **A. Mirzaalian Dastjerdi, S. Rastegar:** Conceptualization, data curation, project administration, supervision, writingreview and editing.

Funding Sources

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit.

References

- 1. Ali, S., Anjum, M.A., Ejaz, S., Hussain, S., Ercisli, S., Saleem, M.S., & Sardar, H. (2021). Carboxymethyl cellulose coating delays chilling injury development and maintains eating quality of 'Kinnow' mandarin fruits during low temperature storage. *International Journal of Biological Macromolecules*, *168*, 77-85. https://doi.org/10.1016/j.ijbiomac.2020.12.028
- Ayranci, E., & Tunc, S. (2004). The effect of edible coatings on water and vitamin C loss of apricots (*Armeniaca vulgaris* Lam.) and green peppers (*Capsicum annuum* L.). *Food Chemistry*, 87(3), 339-342. https://doi.org/10.1016/j.foodchem.2003.12.003
- 3. Brand-Williams, W., Cuvelier, M.E., & Berset, C.L.W.T. (1995). Use of a free radical method to evaluate antioxidant activity. *LWT-Food Science and Technology*, 28(1), 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5
- 4. Butar-Butar, M.E.T., Sukawaty, Y., & Sa'adah, H. (2021). Formulation and evaluation lotion of Tengkawang seed fat (*Shorea mecistopteryx* Ridley) and cocoa fat (*Theobroma cacao* L.) as a base. *Jurnal Farmasi Etam* (*JFE*), 1(1), 1-9. https://doi.org/10.52841/jfe.v1i1.188
- Camargo, J. M., Dunoyer, A. T., & García-Zapateiro, L. A. (2016). The effect of storage temperature and time on total phenolics and enzymatic activity of sapodilla (*Achras sapota* L.). Revista Facultad Nacional de Agronomía Medellín, 69(2), 7955-7963. https://doi.org/10.15446/rfna.v69n2.59140
- 6. Chance, B., & Maehly, A.C. (1955). [136] Assay of catalases and peroxidases. https://doi.org/10.1016/S0076-6879(55)02300-8
- Etemadipoor, R., Dastjerdi, A.M., Ramezanian, A., & Ehteshami, S. (2020). Ameliorative effect of gum arabic, oleic acid and/or cinnamon essential oil on chilling injury and quality loss of guava fruit. *Scientia Horticulturae*, 266, 109255. https://doi.org/10.1016/j.scienta.2020.109255
- Galindo-Pérez, M.J., Quintanar-Guerrero, D., Mercado-Silva, E., Real-Sandoval, S.A., & Zambrano-Zaragoza, M.L. (2015). The effects of tocopherol nanocapsules/xanthan gum coatings on the preservation of fresh-cut apples: Evaluation of phenol metabolism. *Food and Bioprocess Technology*, 8, 1791-1799. https://doi.org/10.1007/s11947-015-1523-y
- Galus, S., & Kadzińska, J. (2015). Food applications of emulsion-based edible films and coatings. *Trends in Food Science & Technology*, 45(2), 273-283. https://doi.org/10.1016/j.tifs. 2015.07.011
- 10. Giannopolitis, C.N., & Ries, S.K. (1977). Superoxide dismutases: I. Occurrence in higher plants. *Plant Physiology*, 59(2), 309-314. https://doi.org/10.1104/pp.59.2.309

- Hassan, B., Chatha, S.A.S., Hussain, A.I., Zia, K.M., & Akhtar, N. (2018). Recent advances on polysaccharides, lipids and protein based edible films and coatings: A review. *International Journal of Biological Macromolecules*, 109, 1095-1107. https://doi.org/10.1016/j.ijbiomac. 2017.11.097
- Hazirah, M.N., Isa, M.I.N., & Sarbon, N.M. (2016). Effect of xanthan gum on the physical and mechanical properties of gelatin-carboxymethyl cellulose film blends. *Food Packaging and Shelf Life*, 9, 55-63. https://doi.org/10.1016/j.fpsl.2016.05.008
- Juhaimi, F.A., Ghafoor, K., & Özcan, M.M. (2012). Physical and chemical properties, antioxidant activity, total phenol and mineral profile of seeds of seven different date fruit (*Phoenix dactylifera* L.) varieties. *International Journal of Food Sciences and Nutrition*, 63(1), 84-89. https://doi.org/10.3109/09637486.2011.598851
- Karunanayake, K.O.L.C., Liyanage, K.C.M., Jayakody, L.K.R.R., & Somaratne, S. (2020). Basil oil incorporated beeswax coating to increase shelf life and reduce anthracnose development in mango cv. Willard. *Ceylon Journal of Science*, 49(5), 355-361. https://doi.org/10.4038/cjs. v49i5.7802
- 15. Khajeh-Ali, S.H., Shahidi, F., Megahed, & Sedaghat, N. (2022). Evaluation of the effect of carboxy methyl cellulose edible coating containing Astragalus honey (*Astragalus gossypinus*) on the shelf-life of pistachio kernel. *Food Control, 139,* 109094. https://doi.org/10.1016/j.foodcont.2022.109094
- Khalil, O.A., Mounir, A.M., & Hassanien, R.A. (2020). Effect of gamma irradiated *Lactobacillus* bacteria as an edible coating on enhancing the storage of tomato under cold storage conditions. *Journal of Radiation Research and Applied Sciences*, 13(1), 318-330. https://doi.org/10.1080/16878507.2020.1723886
- 17. Kumar, A., & Saini, C.S. (2021). Edible composite bi-layer coating based on whey protein isolate, xanthan gum and clove oil for prolonging shelf life of tomatoes. *Measurement Food*, 2, 100005. https://doi.org/10.1016/j.meafoo.2021.100005
- Kumar, N., Pratibha, Upadhyay, A., Trajkovska Petkoska, A., Gniewosz, M., & Kieliszek, M. (2023). Extending the shelf life of mango (*Mangifera indica* L.) fruits by using edible coating based on xanthan gum and pomegranate peel extract. *Journal of Food Measurement and Characterization*, 17(2), 1300-1308. https://doi.org/10.1007/s11694-022-01706-6
- Miteluţ, A.C., Popa, E.E., Drăghici, M.C., Popescu, P.A., Popa, V.I., Bujor, O.C., & Popa, M.E. (2021). Latest developments in edible coatings on minimally processed fruits and vegetables: A review. *Foods*, 10(11), 2821. https://doi.org/10.3390/foods10112821
- 20. Mladenoska, I. (2012). The potential application of novel beeswax edible coatings containing coconut oil in the minimal processing of fruits. *Advanced Technologies*, 1(2), 26-34.
- Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. *Plant and Cell Physiology*, 22(5), 867-880. https://doi.org/10.1093/oxfordjournals.pcp.a076232
- Naveed, F., Nawaz, A., Ali, S., & Ejaz, S. (2024). Xanthan gum coating delays ripening and softening of jujube fruit by reducing oxidative stress and suppressing cell wall polysaccharides disassembly. *Postharvest Biology and Technology*, 209, 112689. https://doi.org/10.1016/j.postharvbio.2023.112689
- 23. O'grady, L., Sigge, G., Caleb, O.J., & Opara, U.L. (2014). Effects of storage temperature and duration on chemical properties, proximate composition and selected bioactive components of pomegranate (*Punica granatum* L.) arils. *LWT-Food Science and Technology*, 57(2), 508-515. https://doi.org/10.1016/j.lwt.2014.02.030
- 24. Oliveira, L.S., Rodrigues, D.C., Lopes, M.M.A., Moura, C.F.H., Oliveira, A.B., & Miranda, M.R. A. (2017). Changes in postharvest quality and antioxidant metabolism during development and

ripening of sapodilla (*Manilkara zapota* L.). *International Food Research Journal*, 24(6), 2427-2434.

- 25. Paidari, S., Zamindar, N., Tahergorabi, R., Kargar, M., Ezzati, S., Shirani, N., & Musavi, S.H. (2021). Edible coating and films as promising packaging: a mini review. *Journal of Food Measurement and Characterization*, 15(5), 4205-4214. https://doi.org/10.1007/s11694-021-00979-7
- 26. Sánchez-González, L., González-Martínez, C., Chiralt, A., & Cháfer, M. (2010). Physical and antimicrobial properties of chitosan-tea tree essential oil composite films. *Journal of Food Engineering*, 98(4), 443-452. https://doi.org/10.1016/j.jfoodeng.2010.01.026
- Sapper, M., Talens, P., & Chiralt, A. (2019). Improving functional properties of cassava starchbased films by incorporating xanthan, gellan, or pullulan gums. *International Journal of Polymer Science*. https://doi.org/10.1155/2019/5367164
- Setianingsih, N.L., Suaniti, N.M., Wirawan, I.G. (2023) Increased attractiveness and shelf life of siamese tangerines (*Citrus nobilis* L.) using various palmitic, stearic, and oleic acid emulsions and mixtures. *AJARCDE (Asian Journal of Applied Research for Community Development and Empowerment*), 13,7(2), 87-96. https://doi.org/10.29165/ajarcde.v7i2.204
- 29. Shah, N.N., Vishwasrao, C., Singhal, R.S., & Ananthanarayan, L. (2016). n-Octenyl succinylation of pullulan: Effect on its physico-mechanical and thermal properties and application as an edible coating on fruits. *Food Hydrocolloids*, 55, 179-188. https://doi.org/10.1016/j.foodhyd.2015.11.026
- Sharif, Z.I.M., Mustapha, F.A., Jai, J., & Zaki, N.A.M. (2017). Review on methods for preservation and natural preservatives for extending the food longevity. *Chemical Engineering Research Bulletin*, 19. https://doi.org/10.3329/cerb.v19i0.33809
- 31. Vargas, M., Albors, A., Chiralt, A., & González-Martínez, C. (2006). Quality of cold-stored strawberries as affected by chitosan–oleic acid edible coatings. *Postharvest Biology and Technology*, *41*(2), 164-171. https://doi.org/10.1016/j.postharvbio.2006.03.016
- 32. Wang, S.Y., & Gao, H. (2013). Effect of chitosan-based edible coating on antioxidants, antioxidant enzyme system, and postharvest fruit quality of strawberries (*Fragaria x aranassa* Duch.). *LWT-Food Science and Technology*, 52(2), 71-79. https://doi.org/10.1016/j.lwt.2012. 05.003
- 33. Wani, S.M., Gull, A., Ahad, T., Malik, A.R., Ganaie, T.A., Masoodi, F.A., & Gani, A. (2021). Effect of gum Arabic, xanthan and carrageenan coatings containing antimicrobial agent on postharvest quality of strawberry: Assessing the physicochemical, enzyme activity and bioactive properties. *International Journal of Biological Macromolecules*. https://doi.org/10.1016/ j.ijbiomac.2021.06.008
- 34. Widyastuti, T., Dewi, S.S., & Mudawy, A.A. (2023). Use of chitosan and essential oils as edible coating for Sapodilla fruit (*Manilkara zapota*). In IOP Conference Series: Earth and Environmental Science (Vol. 1172, No. 1, p. 012057). IOP Publishing. https://doi.org/10. 1088/1755-1315/1172/1/012057
- 35. Xing, Z., Wang, Y., Feng, Z., & Tan, Q. (2008). Effect of different packaging films on postharvest quality and selected enzyme activities of *Hypsizygus marmoreus* mushrooms. *Journal of Agricultural and Food Chemistry*, 56(24), 11838-11844. https://doi.org/10.1021/ jf8024387
- 36. Yaman, Ö., & Bayoundurlı, L. (2002). Effects of an edible coating and cold storage on shelf-life and quality of cherries. *LWT-Food Science and Technology*, 35(2), 146-150. https://doi.org/10. 1006/fstl.2001.0827
- 37. Yuan, F., Wang, C., Yi, P., Li, L., Wu, G., Huang, F., & Gan, T. (2023). The effects of combined 1-methylcyclopropene and melatonin treatment on the quality characteristics and active oxygen

metabolism of mango fruit during storage. *Foods*, 12(10), 1979. https://doi.org/10.3390/foods12101979

- 38. Zhang, Y., Huber, D.J., Hu, M., Jiang, G., Gao, Z., Xu, X., & Zhang, Z. (2018). Delay of postharvest browning in litchi fruit by melatonin via the enhancing of antioxidative processes and oxidation repair. *Journal of Agricultural and Food Chemistry*, 66(28), 7475-7484. https://doi.org/10.1021/acs.jafc.8b01922
- Zheng, M., Lian, F., Zhu, Y., Zhang, Y., Liu, B., Zhang, L., & Zheng, B. (2019). pH-responsive poly (xanthan gum-g-acrylamide-g-acrylic acid) hydrogel: Preparation, characterization, and application. *Carbohydrate Polymers*, 210, 38-46. https://doi.org/10.1016/j.carbpol.2019.01.052

مقاله پژوهشی

جلد ۲۰، شماره ۳، مرداد-شهر یور ۱۴۰۳، ص. ۱۵-۱

تأثیر پوشش خوراکی بر پایه صمغ زانتان غنی شده با اسید اولئیک بر کیفیت انبارمانی و خواص آنتي اکسيداني ميوه چيکو (Manilkara zapota)

دارا رضاخانی نژاد' – عبدالمجید میرزاعلیان دستجردی' – سمیه رستگار ங 🕷

تاریخ دریافت: ۱۴۰۲/۱۰/۱۱ تاریخ پذیرش: ۱۴۰۲/۱۲/۰۹

چکیدہ

میوهی چیکو یا (sapodilla) بهدلیل فسادپذیری بالا و از دست دادن سریع رطوبت، عمر مفید محدودی دارد. استفاده از پوششهای خوراکی بهدلیل تأثیرگذاری در افزایش طول عمر مفید میوهها، مورد توجه زیادی قرار گرفته است. هدف از این مطالعه ارزیابی اثربخشی پوشش خوراکی ساخته شده از صمغ زانتان (۰/۰ و ۲/۰ درصد) همراه با اسید اولئیک (۱ درصد) در افزایش طول عمر مفید میوهی چیکو در دمای ۱ ± ۸ درجه سانتی گراد و رطوبت نسبی ۸۵–۹۰ درصد است. کاهش وزن در میوههای تحت تیمار بهطور قابل توجهی کمتر بود، بهطوری که کمترین کاهش وزن در تیمار (صمغ زانتان ۲/۰ درصد با اسید اولئیک) مشاهده شد. بجز تیمار اسید اولئیک، سایر تیمارها در مقایسه با شاهد، سفتی بالاتری را نشان دادند. در پایان آزمایش، تیمارها بهطور قابل با اسید اولئیک) مشاهده شد. بجز تیمار اسید اولئیک، سایر تیمارها در مقایسه با شاهد، طرفیت آنتی کاسیدانی بهطور قابل توجهی افزایش یافته و سطوح بالاتری از اسید آسکوربیک را نشان دادند. پایین ترین سطح TSX (۲/۸٪) در تیمار (صمغ زانتان ۲/۰ درصد + اسید اولئیک) مشاهده شد. علوه بر این بالاتری از اسید آسکوربیک را نشان دادند. پایین ترین سطح TSX (۲/۸٪) در تیمار (صمغ زانتان ۲/۰ درصد + اسید اولئیک) مشاهده شد. علاوه بر این، تایج نشان داد که میوههای تحت پوشش (صمغ زانتان ۱/۰ درصد + اسید اولئیک) فعالیت بالاتری را در آنزیمهای سوپراکسید دسموتاز (COS)، کاتالاز (CAT) و آسکوربات پراکسیداز (APA) نسبت به میوههای تیمار شده با (صمغ زانتان ۲/۰ درصد + اسید اولئیک) و نمونههای شاهد نشان دادند. به علور کلی، میوههای تحت تیمار با (صمغ زانتان ۲/۰ درصد + اسید اولئیک) و (صمغ زانتان ۲/۰ درصد + اسید اولئیک) در مقایسه با شاهد و سایر بالاتری کیفتیت کلی را نشان دادند. بایراین، استفاده از این تیمار شده با (صمغ زانتان ۲/۰ درصد + اسید اولئیک) در مقایسه با شاهد و سایر دادند. به بالاتری زاد که میوههای تحت تیمار با سید اولئیک) و (صمغ زانتان ۲/۰ درصد + اسید اولئیک) در مقایسه با شاهد و سایر تیمارها، دادند. به براین دادند. بایراین، استفاده از این تیمارها برای حفیل توجهی چیکی ترمی کیفیت کلی را نشان دادند. با شاه دو سایر تیمارها برای حفیکی و وصم خانتان ۲/۰ درصد + اسید اولئیک) در مقایسه با شاهد و سایر تیمارها،

واژههای کلیدی: انبار، اولئیک اسید، پوشش خوراکی، زانتان، ساپودیلا (چیکو)

۱ و ۲- بهترتیب دانشجوی دکتری و دانشیار گروه علوم باغبانی، دانشکده کشاورزی و منابع طبیعی دانشگاه هرمزگان، هرمزگان، ایران (*- نویسنده مسئول: Email: rastegarhort@gmail.com)

https://doi.org/10.22067/ifstrj.2024.86132.1307