با همکاری انجمن علوم و صنایع غذایی ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 بخش تحقیقات فنی و مهندسی کشاورزی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان خراسان رضوی، سازمان تحقیقات، آموزش و ترویج کشاورزی، مشهد.

2 گروه شیمی مواد غذایی، دانشکده کشاورزی، دانشگاه تبریز.

3 بخش تحقیقات اصلاح و تهیه نهال و بذر، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان خراسان رضوی، سازمان تحقیقات، آموزش و ترویج کشاورزی، مشهد.

4 گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه فردوسی مشهد.

5 شرکت کشت و صنعت تماته، کارخانه رب خوشاب خراسان.

چکیده

در این پژوهش برای بهبود ویژگی‌های کاربردی فیلم‌های بر پایه نشاسته سیب‌زمینی نرم‌شده (PS) از نانوذرات سدیم مونت‌موریلونیت (MMT) در دو غلظت 3 و 5 درصد و تیتانیوم‌دی‌اکسید (TiO2) در سه سطح 5/0، 1 و 2 درصد (وزنی/ وزنی نشاسته) به‌صورت توأم استفاده شد و ویژگی‌های ساختاری و فیزیکی آنها مورد مطالعه قرار گرفت. آزمون پراش پرتو X، تغییر نحوه پخش لایه‌های MMT از ورقه‌ای کامل در فیلم دوجزئی 5MMT-PS به ورقه‌ای بین‌لایه‌ای در فیلم‌های سه‌جزئی 5MMT-TiO2-PS را تأیید نمود. نتایج آزمون مکانیکی نشان داد که افزایش غلظت TiO2 در فیلم‌های PS-3%MMT باعث کاهش کشش‌پذیری و افزایش استحکام کششی شده است، اما در فیلم‌های PS-5%MMT، هر دو ویژگی مکانیکی فیلم کاهش یافته است. با افزودن MMT و TiO2 مقدار انحلال‌پذیری در آب و جذب رطوبت به‌طور معنی‌داری کاهش یافته است. همچنین نفوذپذیری نسبت به بخار آب کاهش معنی‌داری را از g/m.h.Pa7-10×84/5 در فیلم دوجزئی PS-3%MMT به g/m.h.Pa7-10×04/3 در فیلم سه‌جزئی 3MMT-2TiO2-PS نشان داد. نتایج آزمون زاویه تماس قطره آب، یافته‌های آزمون‌های جذب رطوبت، حلالیت در آب و نفوذپذیری نسبت به بخار آب را تأیید نمود و نشان داد که افزودن TiO2 سبب افزایش آبگریزی سطحی فیلم‌های نشاسته‌ای حاوی نانورس شده است به‌طوری‌که با افزودن 2 درصد تیتانیوم‌دی‌اکسید به فیلم PS-3%MMT و PS-5%MMT زاویه تماس قطره آب پس از 60 ثانیه به ترتیب 4 و 15 درجه افزایش یافت. نتایج این تحقیق حاکی از آن بود که خواص عملکردی فیلم های نشاسته را می توان با افزودن توأم نانوذرات MMT و TiO2 بهبود بخشید.

کلیدواژه‌ها

عنوان مقاله [English]

Characterization of functional properties of starch based nanobiocomposite films containing montmorillonite and titanium dioxide

نویسندگان [English]

  • Seyed Amir Oleyaei 1
  • Babak Ghanbarzadeh 2
  • Ali Akbar Moayedi 3
  • Parisa Poursani 4
  • Fateme Mousavi Baygi 4
  • Mohammad Reza Bakhsh Amin 5

1 Agricultural Engineering Research Department, Khorasan Razavi Agricultural and Natural Resources Research and Education Center, AREEO, Mashhad, Iran.

2 Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Iran.

3 Seed and Plant Improvement Institute, Crop Science Department, Khorasan Razavi Agricultural and Natural Resources Research and Education Center, AREEO, Mashhad, Iran.

4 Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.

5 Tamata Agro-industry group, Khoshab Khorasan Tomato Paste Factory, Iran.

چکیده [English]

Introduction: Biopolymers are a class of polymer, which are disintegrated by an enzymatic or bio-path and the products disseminated to the surroundings do not induce negative effects. Nowadays, non-degradable polymers are quid pro quo with biodegradable ones particularly in agricultural applications, environmental and food industry use. Starch is an example of natural biopolymers, biocompatible, which is completely biodegradable in environment. It has been considered as one of the best candidates for oil based polymer substitution due to its low cost, availability and processbility. The main disadvantages of starch based polymers are their high hydrophilic nature therefore; they have poor mechanical properties and are permeable to water vapor. However, these aspects could be considerably reclaimed by shuffling it with nanodimension materials such as itanium dioxide (TiO2) and Montmorillonite (MMT). The main reason for this improvement in comparison with conventional composites is the large surface area of these nanomaterials which results in high interactions between the nanofillers and starch. The functional behaviors of nanocomposite films have been depended to the compatibility and degree of nanoparticles dispersion in the biopolymer matrix. TiO2 is a 3D nanosphere has been perused widely because it is inexpensive, chemical inert and, has a high refractive index with visible and UV shielding potential. MMT as a 1D, platelet is the most commonly used layered silicates. The investigation of biodegradable films containing two different nanofillers simultaneously has been rarely done. TiO2 and MMT as two different inorganic nanofillers have different physical and chemical structures, so simultaneously use of TiO2 and MMT clearly had a new effect on the nanoparticle distribution and functional properties of starch films. The aim of this study was investigate the synergistic or antagonistic effect of combination of TiO2 nanoparticles and MMT platelets on the functional properties such as surface hydrophobicity, water vapor permeability (WVP), moisture uptake (MU), Water Solubility (WS) and mechanical properties of plasticized starch-MMT-TiO2 nanocomposites.

Materials and methods: 100 ml of potato starch solution with a concentration of 4% (w/v) was prepared by dispersion of starch in distilled water. It was gelatinized at 80 ºC for 15 min. Different amount of TiO2 (0.5, 1 and 2% w/w starch) and MMT (3 and 5% w/w starch) were dissolved in distilled water and added to the gelatinized starch after treatment with ultrasound for 30 min. Glycerol with concentration of 50% (w/w starch) was added to the starch-nanofillers filmogenic solution. Bionanocomposite plasticized starch (PS) films were produced by casting and were dried in an oven at 45 °C for 15 hours. The X-Ray diffraction (XRD) measurements were performed for MMT and TiO2 powder and starch-MMT and –TiO2 nanocomposite films. The methodology of WVP measurements was based on the ASTM E96-05 (ASTM, 2005). Mechanical properties of the films were determined according to ASTM standard method D882-10 (ASTM, 2010). With some modifications, the methods described by Tunc et al., (2007) and Rhim et al., (2006) were used to determine MU and WS, respectively. Water contact angle (WCA) measurements were performed by the sessile drop procedure. The statistical analyses on a completely randomized design and were carried out using analysis of variance (ANOVA). Duncan’s multiple range test (p < 0.05) was used to detect differences among the mean values of the functional properties.

Results and discussion: XRD demonstrated the change of MMT layers dispersion pattern from exfoliation in binary PS-5%MMT films to exfoliation-intercalation in ternary PS-5MMT-TiO2 films. These results showed that TiO2 agglomerates are formed in the starch matrix with MMT level more than 3% wt. This could be due to the interaction between starch and MMT tends to be more favorable than TiO2. Good dispersion of TiO2, high miscibility of with clay, and continuous phase can be obtained when the content of MMT discs is low. Due to the strong interfacial interaction between the starch and MMT, the tensile strength (TS) increased considerably from4.86 to 5.24 MPa, while the elongation at break (EB) decreased significantly from 78.23 to 71.93%, As the MMT concentration varied from 3 to 5%. The TS of nanocomposite films were further improved after the incorporation of TiO2. Suitable dispersal of TiO2, and creation of new interactions in the PS-MMT network, causes to increase the tensile strength of nanocomposites. The TS and EB values of PS-3MMT-1TiO2 nanocomposite film was higher than that of the other films. This is indicative of a synergistic effect between TiO2 and MMT which increases the tensile strength and does not decrease the EB. In the PS-5% MMT films, both mechanical characteristics were reduced. WVP shows more evidences of synergistic effect of combination of 1D MMT and 3D TiO2 on starch films. WVP reduction by MMT has been attributed to tortuous pathway which created by clay layers in the starch matrix. MMT platelets are water vapor impermeable, thus exfoliation of MMT reduce the voids in starch matrix. The PS-3MMT-2TiO2 nanocomposite showed the lowest WVP as compared to other PS films. WVP was reduced significantly from 5.84 × 10-7 g/m.h.Pa in the PS-3%MMT binary film to 3.04 × 10-7 g/m.h.Pa in the PS-3%MMT-2%TiO2 ternary film. TiO2 have low water solubility and hydrophobicity compared with starch and MMT. Thus, significant decrement of WVP in the prophase of TiO2 connoted that TiO2 was obstructing the nano- and micro-pathways in the PS films network. With addition of MMT and TiO2 content the water solubility and moisture absorption were reduced significantly. Results of water contact angle test confirmed the results of moisture absorption, solubility in water and water vapor permeability and showed that the addition of TiO2 increased the surface hydrophobicity of starch-MMT films as with addition of 2% titanium dioxide in PS-3% MMT and PS-5% MMT films, the contact angle after 60 seconds increased 4 and 15 degree respectively. As a result, 1% wt TiO2 nanoparticles (FDA maximum allowable) can be regarded as the optimum concentration and the developed starch based nanocomposite films can enable undertaking applications as appropriate candidates in food packaging systems.

کلیدواژه‌ها [English]

  • Starch
  • Montmorillonite
  • TiO2
  • Mechanical properties
  • permeability
Abolghasemi Fakhri, L., Ghanbarzadeh, B., Dehghannia, J. and Entezami, A.A. 2012. The Effects of Montmorillonite and Cellulose Nanocrystals on Physical Properties of Carboxymethyl Cellulose/Polyvinyl Alcohol Blend Films. Iranian Journal of Polymer, 24, 6, 455-466
Almasi, H., Ghanbarzadeh, B. and Entezami, A.A. 2010. Physicochemical properties of starch–CMC–nanoclay biodegradable films. International Journal of Biological Macromolecules, 46, 1, 1-5.
Anitha, S., Brabu, B., Thiruvadigal, D.J., Gopalakrishnan, C. and Natarajan, T.S., 2012. Optical, bactericidal and water repellent properties of electrospun nano-composite membranes of cellulose acetate and ZnO. Carbohydrate Polymers, 87, 1065– 1072.
ASTM. 2005. Standard test methods for water vapor transmission of material. E96-05. Annual book of ASTM, Philadelphia, PA: American Society for Testing and Materials.
ASTM. 2010. Standard test methods for tensile properties of thin plastic sheeting. D882-10. Annual book of ASTM, Philadelphia, PA: American Society for testing and Materials.
Bendahou, A., Kaddami, H., Espuche, E., Gouanve, F. and Dufresne, A. 2011. Synergism Effect of Montmorillonite and Cellulose Whiskers on the Mechanical and Barrier Properties of Natural Rubber Composites. Macromolecular Materials and Engineering, 296, 1–10.
Cyras, V. P., Manfredi, L. B., Ton-That, M. and Vazquez, A., 2008. Physical and mechanical properties of thermoplastic starch/ montmorillonite nanocomposite films. Journal of Carbohydrate Polymers, 73, 55-63.
Deka, B. K. & Maji, T.K., 2011. Effect of TiO2 and nanoclay on the properties of wood polymer nanocomposite. Composites Part A: Applied Science and Manufacturing, 42, 12, 2117–2125.
Ghanbarzadeh, B., Almasi H. and Oleyaei, S. A. 2014. A Novel Modified Starch/Carboxy‌ Methyl Cellulose/Montmorillonite Bionanocomposite Film: Structural and Physical Properties, International Journal of Food Engineering, 10 (1): 121–130.
Ghanbarzadeh, B., Oleyaei, S. A. and Almasi H. 2014. Nano-Structured Materials Utilized in Biopolymer based Plastics for Food Packaging Applications. Critical Reviews in Food Science and Nutrition, 55:1699–1723.
Gontard, N., Duchez, C., Cuq, B. and Guilbert, S. 1994. Edible composite films of wheat gluten and lipids: water vapour permeability and other physical properties. Food Science and Technology, 29, 39-50.
Huang, M. F., Yu, J. G. & Ma, X. F., 2004. Studies on the properties of montmorillonite-reinforces thermoplastic starch composites. Polymers, 45, 7017-7023.
Kampeerapappun, P., Srikulkit, K., Pentrakoon, D., 2004. Preparation of cassava starch/montmorillonite nanocomposite film. Journal of Science Research. 29, 2, 183-197
Li, Y., Jiang, Y., Liu, F., Ren, F., Zhao, G. and Leng, X. 2011. Fabrication and characterization of TiO2/whey protein isolate nanocomposite film. Food Hydrocolloids, 25, 6, 1-7.
Liu, B. & Huang, T.B., 2008. Nanocomposites of Genipin-Crosslinked Chitosan/Silver Nanoparticles–Structural Reinforcement and Antimicrobial Properties. Macromolecular Bioscience Journals, 8, 932–941.
Maksimov, R. D., Lagzdins, A., Lilichenko, N. and Plume, E. 2009. Mechanical Properties and Water Vapor Permeability of Starch/Montmorillonite Nanocomposites. Polymer Engineering and Science, 49, 12, 2421-2429.
Müller, C.M.O., Laurindo, J.B. and Yamashita, F. 2011. Effect of nanoclay incorporation method on mechanical and water vapor barrier properties of starch-based films. Industrial Crops and Products, 33, 3, 605-610.
Noushirvani, N., Ghanbarzadeh, B. and Entezami, A.A. 2012. Comparison of Tensile, Permeability and Color Properties of Starch-based Bionanocomposites Containing Two Types of Fillers: Sodium Montmorilonite and Cellulose Nanocrystal. Iranian Journal of Polymer, 24, 5, 391-402.
Oleyaei, S. A., Ghanbarzadeh, B., Moayedi, A.A. and Abbasi, F. The Effects of TiO2 and Montmorillonite Nanofillers on Structural, Thermal and Optical Properties of Starch based Nanobiocomposite Films. 2016. Iranian Food Science and Technology Research Journal. [Accepted, In Press].
Qu, L., Huang, G., Zhang, P., Nie, Y. and Weng, G. 2009. Synergistic reinforcement of nanoclay and carbon black in natural rubber. Polymer International, 59, 1397–1402.
Rhim, J.W., Hong, S.I., Park, H.M., & Ng, P.K.W., 2006. Preparation and Characterization of Chitosan-Based Nanocomposite Films with Antimicrobial Activity. Journal of Agriculture and Food Chemistry, 54, 5814−5822.
Rhim, J.W. 2007. Potential use of biopolymer-based nanocomposite in food packaging applications. Food science and Biotechnology, 16(5), 691-709.
Rhim, J.W. 2011. Effect of clay contents on mechanical and water vapor barrier properties of agar-based nanocomposite films. Carbohydrate Polymers, 86, 691– 699.
Shan, G., Surampalli, R. Y., Tyagi, R. D. and Zhang, T. C., 2009. Nanomaterials for environmental burden reduction, waste treatment, and nonpoint source pollution control. Frontiers of Chemical Engineering in China, 3(3), 249–264.
Tang, C., Chen, N., Zhang, Q., Wang, K., Fu, Q. and Zhang, X. 2009. Preparation and properties of chitosan nanocomposites with nanofillers of different dimensions. Polymer Degradation and Stability, 94, 124–131.
Vergnaud, J.M. 1998. Problems encountered for food safety with polymer packages: chemical exchange, recycling. Advances in Colloid and Interface Science, 78, 267-297.
Zhou, J.J., Wang, S.Y. and Gunasekaran, S. 2009. Preparation and Characterization of Whey Protein Film Incorporated with TiO2 Nanoparticles. Journal of Food Science, 74, 7, 50-56.
Zolfi, M., Khodaiyan, F., Mousavi, M. andHashemi, M. 2014. Development and characterization of the kefiran-whey proteinisolate-TiO2 nanocomposite films, International Journal of Biological Macromolecule, 65, 340–345.
CAPTCHA Image