Document Type : Review Article-en
Authors
Department of Food Science and Technology, Sari Agricultural Sciences and Natural Resources University, Iran
Abstract
The effects of traditional livestock farming on the environment and its limited scalability contribute to the persistent worldwide dilemma of food insecurity. Growing animal cells under regulated conditions has given rise to cultured meat, which might be a more ethical and ecological option. The potential of cultured meat to solve issues with food security is critically examined in this review article, which does so by thoroughly analyzing its effects on global food systems, sustainability prospects, technical breakthroughs, and related obstacles. Life cycle analyses show that the environmental impact of producing cultured meat is much lower than that of producing traditional meat. Significant scientific advancements have moved the production of cultured meat closer to commercial viability, including scaffold advances, tissue engineering, bioreactor design, and cell line optimization. There are still a number of formidable obstacles to overcome, including establishing large-scale manufacturing at a reasonable cost, negotiating intricate regulatory environments, guaranteeing product safety, and cultivating customer acceptability. To overcome these challenges and realize the promise of cultured meat to improve food and nutrition security while promoting environmental sustainability and animal welfare, an interdisciplinary strategy incorporating scientific, technical, regulatory, and social views is essential.
Keywords
Main Subjects
©2024 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0). |
- Ahmad, S.S., Hee Jin, Ch., Khurshid, A., Sibhghatulla, Sh.,, Jeong Ho, L., Shahid, A., & Sung Soo, H., (2023). The roles of growth factors and hormones in the regulation of muscle satellite cells for cultured meat production. Journal of Animal Science and Technology, 65(1), 16–31. https://doi.org/10.5187/jast.2022.e114
- Ashizawa, R., Natalie, R., Sophia, L., Avery, P., Victoria, D., & Kaplan, D.L. (2022). Entomoculture: A preliminary techno-economic assessment. Foods, 11(19), 3037. https://doi.org/10.3390/foods11193037
- Allan, S.J., De Bank, P.A., & Ellis, M.J. (2019). Bioprocess design considerations for cultured meat production with a focus on the expansion bioreactor. Frontiers in Sustainable Food Systems, 3. https://doi.org/10.3389/fsufs.2019.00044
- Aragão, C., Gonçalves, A.T., Costas, B., Azeredo, R., Xavier, M.J., & Engrola, S. (2022). Alternative proteins for fish diets: Implications beyond growth. Animals, 12(9), 1211. https://doi.org/10.3390/ani12091211
- Batish, I., Zarei, M., Nitin, N., & Ovissipour, R. (2022). Evaluating the potential of marine invertebrate and insect protein hydrolysates to reduce fetal bovine serum in cell culture media for cultivated fish production. Biomolecules, 12(11), 1697. https://doi.org/10.3390/biom12111697
- Ben-Arye, T., & Levenberg, S. (2019). Tissue engineering for clean meat production. Frontiers in Sustainable Food Systems, 3. https://doi.org/10.3389/fsufs.2019.00046
- Ben-Arye, T., Shandalov, Y., Ben-Shaul, S., Landau, S., Zagury, Y., Ianovici, I., Lavon, N., & Levenberg, S. (2020). Textured soy protein scaffolds enable the generation of three-dimensional bovine skeletal muscle tissue for cell-based meat. Nature Food, 1(4), 210–220. https://doi.org/10.1038/s43016-020-0046-5
- Benjaminson, M.A., Gilchriest, J.A., & Lorenz, M. (2002). In vitro edible muscle protein production system (MPPS): Stage 1, fish. Acta Astronautica, 51(12). https://doi.org/10.1016/ S0094-5765(02)00033-4
- Bodiou, V., Moutsatsou, P., & Post, M.J. (2020). Microcarriers for upscaling cultured meat production. Frontiers in Nutrition, 7. https://doi.org/10.3389/fnut.2020.00010
- Bomkamp, C., Skaalure, S.C., Fernando, G.F., Ben‐Arye, T., Swartz, E.W., & Specht, E.A. (2022a). Scaffolding biomaterials for 3D cultivated meat: Prospects and challenges. Advanced Science, 9(3). https://doi.org/10.1002/advs.202102908
- Bryant, C., & Barnett, J. (2018). Consumer acceptance of cultured meat: A systematic review. In Meat Science (Vol. 143). https://doi.org/10.1016/j.meatsci.2018.04.008
- Bryant, C.J. (2020). Culture, meat, and cultured meat. Journal of Animal Science, 98(8). https://doi.org/10.1093/jas/skaa172
- Buchenauer, A., Hofmann, M.C., Funke, M., Büchs, J., Mokwa, W., & Schnakenberg, U. (2009). Micro-bioreactors for fed-batch fermentations with integrated online monitoring and microfluidic devices. Biosensors and Bioelectronics, 24(5), 1411–1416. https://doi.org/10.1016/j.bios. 2008.08.043
- Chauvet, D.J. (2018). Should culture meat be refused in the name of animal dignity? Ethical Theory and Moral Practice, 21(2), 387–411. https://doi.org/10.1007/s10677-018-9888-4
- Chen, X.-Y., Chen, J.-Y., Tong, X.-M., Mei, J.-G., Chen, Y.-F., & Mou, X.-Z. (2020). Recent advances in the use of microcarriers for cell cultures and their ex vivo and in vivo applications. Biotechnology Letters, 42(1), 1–10. https://doi.org/10.1007/s10529-019-02738-7
- Choudhury, D., Tseng, T.W., & Swartz, E. (2020). The business of cultured meat. In Trends in Biotechnology, 38(6), 573–577. https://doi.org/10.1016/j.tibtech.2020.02.012
- Chriki, S., & Jean-François, H. (2020). The myth of cultured meat: A review. Frontiers in Nutrition, 7. https://doi.org/10.3389/fnut.2020.00007
- Das, R., Roosloot, R., van Santen, P., & de Bruijn, J. (2014). Novel process control in a closed system bioreactor for culture of adherent cells. Cytotherapy, 16(4), S106–S107. https://doi.org/10.1016/j.jcyt.2014.01.394
- Djisalov, M., Knežić, T., Podunavac, I., Živojević, K., Radonic, V., Knežević, N.Ž., Bobrinetskiy, I., & Gadjanski, I. (2021). Cultivating multidisciplinarity: Manufacturing and sensing challenges in cultured meat production. Biology, 10(3), 204. https://doi.org/10.3390/biology10030204
- Edelman, P.D., McFarland, D.C., Mironov, V.A., & Matheny, J.G. (2005). Commentary: In Vitro -cultured meat production. Tissue Engineering, 11(5–6), 659–662. https://doi.org/10.1089/ten. 2005.11.659
- Eibl, R., & Eibl, D. (2008). Design of bioreactors suitable for plant cell and tissue cultures. Phytochemistry Reviews, 7(3), 593–598. https://doi.org/10.1007/s11101-007-9083-z
- Fraeye, I., Kratka, M., Vandenburgh, H., & Thorrez, L. (2020). Sensorial and nutritional aspects of cultured meat in comparison to traditional meat: Much to be inferred. Frontiers in Nutrition, 7. https://doi.org/10.3389/fnut.2020.00035
- Gaydhane, M.K., Mahanta, U., Sharma, C.S., Khandelwal, M., & Ramakrishna, S. (2018). Cultured meat: state of the art and future. Biomanufacturing Reviews, 3(1), 1. https://doi.org/10.1007/s40898-018-0005-1
- Ge, C., Selvaganapathy, P.R., & Geng, F. (2023). Advancing our understanding of bioreactors for industrial-sized cell culture: health care and cellular agriculture implications. American Journal of Physiology-Cell Physiology, 325(3), C580–C591. https://doi.org/10.1152/ajpcell.00408.2022
- Genovese, N.J., Domeier, T.L., Telugu, B.P.V.L., & Roberts, R.M. (2017). Enhanced development of skeletal myotubes from porcine induced pluripotent stem cells. Scientific Reports, 7. https://doi.org/10.1038/srep41833
- Guan, X., Lei, Q., Yan, Q., Li, X., Zhou, J., Du, G., & Chen, J. (2021). Trends and ideas in technology, regulation and public acceptance of cultured meat. Future Foods, 3, 100032. https://doi.org/10.1016/j.fufo.2021.100032
- Hamdan, M.N., Ramli, M.A., Zaman Huri, N.M.F., Abd Rahman, N.N.H., & Abdullah, A. (2021). Will Muslim consumers replace livestock slaughter with cultured meat in the market? In Trends in Food Science and Technology, 109. https://doi.org/10.1016/j.tifs.2021.01.034
- Hamzeh, A., Rezaei, M., Khodabandeh, S., Motamedzadegan, A., & Noruzinia, M. (2018). Antiproliferative and antioxidative activities of cuttlefish (Sepia pharaonis) protein hydrolysates as affected by degree of hydrolysis. Journal of Food Measurement and Characterization, 12(2), 721–727. https://doi.org/10.1007/s11694-017-9685-0
- Hanga, M.P., Ali, J., Moutsatsou, P., de la Raga, F.A., Hewitt, C.J., Nienow, A., & Wall, I. (2020). Bioprocess development for scalable production of cultivated meat. Biotechnology and Bioengineering, 117(10), 3029–3039. https://doi.org/10.1002/bit.27469
- Hong, T.K., Shin, D.-M., Choi, J., Do, J.T., & Han, S.G. (2021). Current issues and technical advances in cultured meat production: A review. Food Science of Animal Resources, 41(3), 355–372. https://doi.org/10.5851/kosfa.2021.e14
- Ibidhi, R., & Ben Salem, H. (2020). Water footprint of livestock products and production systems: a review. Animal Production Science, 60(11), 1369. https://doi.org/10.1071/AN17705
- Ikasari, B.N., Alfarizi, S., Fauziyah, Sh., Wardhani, P., Soegeng Soegijanto, A., & Sucipto, T. (2022). Effect of fetal bovine serum concentration towards vero cells growth on culture in DMEM medium. Jurnal Teknologi Laboratorium, 11(2), 73–77. https://doi.org/10.29238/ teknolabjournal.v11i2.313
- Jairath, G., Mal, G., Gopinath, D., & Singh, B. (2021). A holistic approach to access the viability of cultured meat: A review. Trends in Food Science & Technology, 110, 700–710. https://doi.org/10.1016/j.tifs.2021.02.024
- Jochems, C.E.A., van der Valk, J.B.F., Stafleu, F.R., & Baumans, V. (2002). The use of fetal bovine serum: Ethical or scientific problem? Alternatives to Laboratory Animals, 30(2), 219–227. https://doi.org/10.1177/026119290203000208
- Kim, Cho H., Lee, H.J., Jung, D.Y., Kim, M., Jung, H.Y., Hong, H., Choi, Y.S., In Yong, H., & Jo, Ch. (2023). Evaluation of fermented soybean meal and edible insect hydrolysates as potential serum replacement in pig muscle stem cell culture. Food Bioscience, 54, 102923. https://doi.org/10.1016/j.fbio.2023.102923
- Kimura, A., Yoshida, F., Ueno, M., & Taguchi, M. (2021). Application of radiation crosslinking technique to development of gelatin scaffold for tissue engineering. Radiation Physics and Chemistry, 180, 109287. https://doi.org/10.1016/j.radphyschem.2020.109287
- Kröncke, N., & Benning, R. (2023). Influence of dietary protein content on the nutritional composition of mealworm larvae (Tenebrio molitor). Insects, 14(3), 261. https://doi.org/ 10.3390/insects14030261
- Lee, D.Y., Lee, S.Y., Yun, S.H., Jeong, J.W., Kim, J.H., Kim, H.W., & Choi, J.S. (2022). Review of the current research on fetal bovine serum and the development of cultured meat. Food Science of Animal Resources, 42(5), 775–99. https://doi.org/10.5851/kosfa.2022.e46
- Lee, D.K., Kim, M., Jeong, J., Lee, Y.S., Yoon, J.W., An, M.J., Jung, H.Y., Kim, C.H., Ahn, Y., Choi, K.H., Jo, C., & Lee, C.K. (2023). Unlocking the potential of stem cells: Their crucial role in the production of cultivated meat. In Current Research in Food Science, 7. https://doi.org/10.1016/j.crfs.2023.100551
- Lee, D.Y., Lee, S.Y., Jung, J.W., Kim, J.H., Oh, D.H., Kim, H.W., Kang, J.H., Choi, J.S., Kim, G.-D., Joo, S.-T., & Hur, S.J. (2023). Review of technology and materials for the development of cultured meat. Critical Reviews in Food Science and Nutrition, 63(27), 8591–8615. https://doi.org/10.1080/10408398.2022.2063249
- López-Martínez, M.I., Miguel, M., & Garcés-Rimón, M. (2022). Protein and sport: Alternative sources and strategies for bioactive and sustainable sports nutrition. Frontiers in Nutrition, 9. https://doi.org/10.3389/fnut.2022.926043
- Lu, H., Ying, K., Shi, Y., Liu, D., & Chen, Q. (2022). Bioprocessing by decellularized scaffold biomaterials in cultured meat: A review. Bioengineering, 9(12), 787. https://doi.org/10.3390/ bioengineering9120787
- Lupatini, A.L., Colla, L.M., Canan, C., & Colla, E. (2017). Potential application of microalga Spirulina platensis as a protein source. Journal of the Science of Food and Agriculture, 97(3), 724–732. https://doi.org/10.1002/jsfa.7987
- Manzocchi, E., Guggenbühl, B., Kreuzer, M., & Giller, K. (2020). Effects of the substitution of soybean meal by spirulina in a hay-based diet for dairy cows on milk composition and sensory perception. Journal of Dairy Science, 103(12), 11349–11362. https://doi.org/10.3168/jds.2020-18602
- Mattick, C.S., Landis, A.E., Allenby, B.R., & Genovese, N.J. (2015). Anticipatory life cycle analysis of in vitro biomass cultivation for cultured meat production in the United States. Environmental Science and Technology, 49(19), 11941–11949. https://doi.org/10.1021/ ACS.EST.5B01614
- Mekonnen, M.M., & Hoekstra, A.Y. (2012). A global assessment of the water footprint of farm animal products. Ecosystems, 15(3). https://doi.org/10.1007/s10021-011-9517-8
- Minghao, N., Shima, A., & Takeuchi, Sh. (2023). Centimeter-scale perfusable cultured meat with densely packed, highly aligned muscle fibers via hollow fiber bioreactor. Biorxiv (Preprint).
- Mirzakhani, M.K., Abedian Kenari, A., & Motamedzadegan, A. (2018). Prediction of apparent protein digestibility by in vitro pH-stat degree of protein hydrolysis with species-specific enzymes for Siberian sturgeon (Acipenser baeri, Brandt 1869). Aquaculture, 496, 73–78. https://doi.org/10.1016/j.aquaculture.2018.07.014
- Moritz, M.S.M., Verbruggen, S.E.L., & Post, M.J. (2015). Alternatives for large-scale production of cultured beef: A review. Journal of Integrative Agriculture, 14(2), 208–216. https://doi.org/10.1016/S2095-3119(14)60889-3
- Mullenix, G.J., Greene, E.S., Emami, N.K., Tellez-Isaias, G., Bottje, W.G., Erf, G.F., Kidd, M.T., & Dridi, S. (2021). Spirulina platensis inclusion reverses circulating pro-inflammatory (Chemo) cytokine profiles in broilers fed low-protein diets. Frontiers in Veterinary Science, 8. https://doi.org/10.3389/fvets.2021.640968
- Munteanu, C., Mireşan, V., Răducu, C., Ihuţ, A., Uiuiu, P., Pop, D., Neacşu, A., Cenariu, M., & Groza, I. (2021). Can cultured meat be an alternative to farm animal production for a sustainable and healthier lifestyle? Frontiers in Nutrition, 8. https://doi.org/10.3389/fnut.2021.749298
- Musyoka, S.N., Liti, D.M., Ogello, E., & Waidbacher, H. (2019). Utilization of the earthworm, Eisenia fetida (Savigny, 1826) as an alternative protein source in fish feeds processing: A review. Aquaculture Research, 50(9), 2301–2315. https://doi.org/10.1111/are.14091
- Nakamura, M., Tomochi, H., Andoh, K., Nishimori, A., Suda, Y., Matsuura, Y., & Iwamaru, Y. (2022). Inspection of commercially available fetal bovine Sera collected between 2017 and 2021 for the contamination of bovine viral diarrhea virus. Journal of the Japan Veterinary Medical Association, 75(7), e139–e144. https://doi.org/10.12935/jvma.75.e139
- Negulescu, P.G., Risner, D., Spang, E.S., Sumner, D., Block, D., Nandi, S., & McDonald, K.A. (2023). Techno‐economic modeling and assessment of cultivated meat: Impact of production bioreactor scale. Biotechnology and Bioengineering, 120(4), 1055–1067. https://doi.org/10.1002/ bit.28324
- Newton, P., & Blaustein-Rejto, D. (2021). Social and economic opportunities and challenges of plant-based and cultured meat for rural producers in the US. Frontiers in Sustainable Food Systems, 5. https://doi.org/10.3389/fsufs.2021.624270
- Ng, S., & Kurisawa, M. (2020). Integrating biomaterials and food biopolymers for cultured meat production. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3692010
- Obom, K.M., Cummings, P.J., Ciafardoni, J.A., Hashimura, Y., & Giroux, D. (2014). Cultivation of mammalian cells using a single-use pneumatic bioreactor system. Journal of Visualized Experiments, 92. https://doi.org/10.3791/52008
- Ong, K.J., Tejeda-Saldana, Y., Duffy, B., Holmes, D., Kukk, K., & Shatkin, J.A. (2023). Cultured meat safety research priorities: Regulatory and governmental perspectives. Foods, 12(14). https://doi.org/10.3390/foods12142645
- Ozhava, D., Bhatia, M., Freman, J., & Mao, Y. (2022). Sustainable cell sources for cultivated meat. Journal of Biomedical Research & Environmental Sciences, 3(12). https://doi.org/ 10.37871/jbres1607
- Peng, C.-A., & Palsson, B.Ø. (2000). Cell growth and differentiation on feeder layers is predicted to be influenced by bioreactor geometry. Biotechnology and Bioengineering, 50(5), 479–492. https://doi.org/10.1002/(SICI)1097-0290(19960605)50
- Penn, J. (2018). Cultured meat: Lab-grown beef and regulating the future meat market. UCLA Journal of Environmental Law and Policy, 36(1). https://doi.org/10.5070/l5361039902
- Post, M.J. (2012). Cultured meat from stem cells: Challenges and prospects. In Meat Science, 92(3). https://doi.org/10.1016/j.meatsci.2012.04.008
- Post, M.J., Levenberg, S., Kaplan, D.L., Genovese, N., Fu, J., Bryant, C.J., Negowetti, N., Verzijden, K., & Moutsatsou, P. (2020). Scientific, sustainability and regulatory challenges of cultured meat. Nature Food, 1(7), 403–415. https://doi.org/10.1038/s43016-020-0112-z
- Prasad, Sh., Prakash, C., Rohit, K., Karunakaran, M., Santra, A., & Subrata, K.D. (2018). Development of cattle embryo through in vitro technique using epidermal growth factor as a media supplement. International Journal of Bio-resource and Stress Management, 9(6), 691–94. https://doi.org/10.23910/IJBSM/2018.9.6.1923
- Roncolini, A., Milanović, V., Aquilanti, L., Cardinali, F., Garofalo, C., Sabbatini, R., Clementi, F., Belleggia, L., Pasquini, M., Mozzon, M., Foligni, R., Federica Trombetta, M., Haouet, M.N., Serena Altissimi, M., Di Bella, S., Piersanti, A., Griffoni, F., Reale, A., Niro, S., & Osimani, A. (2020). Lesser mealworm (Alphitobius diaperinus) powder as a novel baking ingredient for manufacturing high-protein, mineral-dense snacks. Food Research International, 131, 109031. https://doi.org/10.1016/j.foodres.2020.109031
- Schaefer Owen, G., & Savulescu, J. (2014). The ethics of producing in vitro meat. Journal of Applied Philosophy, 31(2), 188–202. https://doi.org/10.1111/japp.12056
- Seah, J.S.H., Singh, S., Tan, L.P., & Choudhury, D. (2022). Scaffolds for the manufacture of cultured meat. Critical Reviews in Biotechnology, 42(2), 311–323. https://doi.org/10.1080/ 07388551.2021.1931803
- Shaviklo, A.R., Moradinezhad, N., Abolghasemi, S.J., Motamedzadegan, A., Kamali-Damavandi, N., & Rafipour, F. (2016). Product optimization of fish burger containing tuna protein isolates for better sensory quality and frozen storage stability. Turkish Journal of Fisheries and Aquatic Sciences, 16(4). https://doi.org/10.4194/1303-2712-v16_4_20
- Smetana, S., Mathys, A., Knoch, A., & Heinz, V. (2015). Meat alternatives: life cycle assessment of most known meat substitutes. International Journal of Life Cycle Assessment, 20(9). https://doi.org/10.1007/s11367-015-0931-6
- Stephens, N., Di Silvio, L., Dunsford, I., Ellis, M., Glencross, A., & Sexton, A. (2018). Bringing cultured meat to market: Technical, socio-political, and regulatory challenges in cellular agriculture. In Trends in Food Science and Technology, https://doi.org/10.1016/j.tifs. 2018.04.010
- Stout, A.J., Zhang, X., Letcher, S.M., Rittenberg, M.L., Shub, M., Chai, K.M., Kaul, M., & Kaplan, D.L. (2024). Engineered autocrine signaling eliminates muscle cell FGF2 requirements for cultured meat production. Cell Reports Sustainability, 1(1), 100009. https://doi.org/10.1016/j.crsus.2023.100009
- Tabarestani, Shahiri, H., Maghsoudlou, Y., Motamedzadegan, A., & Sadeghi Mahoonak, A.R. (2010). Optimization of physico-chemical properties of gelatin extracted from fish skin of rainbow trout (Onchorhynchus mykiss). Bioresource Technology, 101(15), 6207–14. https://doi.org/10.1016/j.biortech.2010.02.071
- Taheri, A., Abedian Kenari, A., Motamedzadegan, A., & Habibi Rezaie, M. (2011). Optimization of goldstripe sardine (Sardinella gibbosa) protein hydrolysate using Alcalase® 2.4L by response surface methodology Optimización de hidrolisato de proteína de Sardinela dorada (Sardinella gibbosa) usando Alcalase® 2.4L a través de RSM. CyTA. Journal of Food, 9(2), 114–120. https://doi.org/10.1080/19476337.2010.484551
- Tahir, I., & Floreani, R. (2022). Dual-crosslinked alginate-based hydrogels with tunable mechanical properties for cultured meat. Foods, 11(18), 2829. https://doi.org/10.3390/ foods11182829
- Tuomisto, H.L., & Teixeira de Mattos, M.J. (2011). Environmental impacts of cultured meat production. Environmental Science & Technology, 45(14), 6117–6123. https://doi.org/10.1021/ es200130u
- Tzachor, A., Smidt-Jensen, A., Ramel, A., & Geirsdóttir, M. (2022). Environmental impacts of large-scale spirulina (Arthrospira platensis) production in Hellisheidi Geothermal Park Iceland: Life cycle assessment. Marine Biotechnology, 24(5), 991–1001. https://doi.org/10.1007/s10126-022-10162-8
- Wang, J., Ding, X., & Zhou, G. (2022). Cutting-edge tissue engineering strategies for cultured meat. Food Materials Research, 2(1), 1–5. https://doi.org/10.48130/FMR-2022-0020
- Wang, Y., Ji, H., He, L., Niu, Y., Zhang, Y., Liu, Y., Tian, Y., Liu, X., Li, H., Kang, X., Gao, Y., & Li, Z. (2024). Establishment and analysis of immortalized chicken skeletal muscle satellite cell lines1. Journal of Integrative Agriculture. https://doi.org/10.1016/j.jia.2024.01.034
- Wang, Y., Zou, L., Liu, W., & Chen, X. (2023). An overview of recent progress in engineering three-dimensional scaffolds for cultured meat production. Foods, 12(13), 2614. https://doi.org/10.3390/foods12132614
- Yeo, D., Kiparissides, A., Cha, J.M., Aguilar-Gallardo, C., Polak, J.M., Tsiridis, E., Pistikopoulos, E. N., & Mantalaris, A. (2013). Improving embryonic stem cell expansion through the combination of perfusion and bioprocess model design. PLoS ONE, 8(12), e81728. https://doi.org/10.1371/journal.pone.0081728
- Young, Ashlyn T., White, O.C., & Daniele, M.A. (2020). Rheological properties of coordinated physical gelation and chemical crosslinking in gelatin methacryloyl (GelMA) hydrogels. Macromolecular Bioscience, 20(12). https://doi.org/10.1002/mabi.202000183
- Yu, I., Choi, J., Kim, M.K., & Kim, M.J. (2023). The comparison of commercial serum-free media for Hanwoo satellite cell proliferation and the role of fibroblast growth factor 2. Food Science of Animal Resources, 43(6), 1017–30. https://doi.org/10.5851/kosfa.2023.e68
- Zhang, G., Zhao, X., Li, X., Du, G., Zhou, J., & Chen, J. (2020). Challenges and possibilities for bio-manufacturing cultured meat. Trends in Food Science & Technology, 97, 443–450. https://doi.org/10.1016/j.tifs.2020.01.026
Send comment about this article