with the collaboration of Iranian Food Science and Technology Association (IFSTA)

Document Type : Research Article

Authors

Department of Food Science and Technology, Faculty of Animal Science and Food Technology, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran.

Abstract

Introduction: Essential oils and secondary metabolites of plants have too many uses in medicine as well as food and hygiene industries. The herbal essential oils include different health features including antioxidant and antibacterial activities. Several forms of the activated oxygen, also known as reactive oxygen species (ROS), include free radicals and non-free radical species. In traditional Iranian medicine, coriander seeds are widely used to treat the disease. The objectives of this paper were to identify the chemical compounds and to measure the phenol content and the antioxidant potential of coriander seed essential oil in addition to its free radical scavenging activity. The other aim of this work was to investigate the antimicrobial of coriander seed essential oil on Bacillus cereus, Salmonella typhi, Escherichia coli and Pseudomonas aeruginosa “in vitro”.
 
Materials and methods: In this research, the coriander seed essential oil (100 g) was extraction using water-distillation method with clevenger apparatus. Afterwards, coriander seed essential oil was collected in vials which had already been weighed by a 0.0001 balance and stored at 4 °C until testing. Chemical composition of coriander seed essential oil was determined using gas chromatography. The antioxidant activity was determined by 2,2’-azinobis (3-ethylbenzothiazoline-6-sulphonic acid) di-ammonium salt (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicles, respectively. The method of Folin-Ciocalteu was performed through determination of TPC. The result was reported as mg of gallic acid/g of the dried coriander seed essential oil. The antioxidant potential of the essential oil was compared with BHA synthetic antioxidant at a concentration of 100 μg/ml. Antibacterial activity of coriander essential oil was determined by disc diffusion agar (Kirby-Bauer test), minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) methods.
 
Results and discussion: Based on the results of chemical analysis, the coriander seed essential oil was rich in oxygenated monoterpenes (89.94%). The main compound of coriander seed essential oil was Linalool (76.75%). The highest percentage of free radical scavenging for DPPH was 53.5% and for ABTS 66.6% at 900 ppm concentration. The total phenol content essential oil was 38.04 ± 0.02 mg GAE/g. The result show that, the most sensitive and the most resistant bacteria with diameter inhibition zone 30.30 mm and 23.15 mm were Bacillus cereus and Salmonella typhi respectively. MIC of coriander seed essential oil for Bacillus cereus, Salmonella typhi, Escherichia coli and Pseudomonas aeruginosa was 2, 4, 4 and 4 mg/ml respectively. MBC of coriander seed essential oil for Bacillus cereus, Salmonella typhi, Escherichia coli and Pseudomonas aeruginosa was 512, > 512, > 512 and 512 mg/ml respectively. In general, the results indicated that the coriander seed essential oil was effective on microorganisms; nevertheless, the extent of its effectiveness varied depending on the type of microorganism. The gram-positive bacteria are more sensitive to essential oil rather than gram-negative ones. The higher resistance of gram-negative bacteria to the essential oils of medicinal plants could be attributed to the more complex structure of the cell membrane of these bacteria compared with the single layer structure of the gram-positive ones. The results of this study revealed that coriander seed essential oil had less antioxidant activity than synthetic antioxidant BHA. Antibacterial activity of the essential oil was higher than the gentamicin antibiotic. Regarding the chemical compositions identified in the coriander seed essential oil, these compositions could be employed as an important economical source uses in medicine as we as food and hygiene industries.

Keywords

حقیرالسادات، ف.، برنارد، ف.، کلانتر، م.، شیخها، ‌م.‌ح.، حکم اللهی، ف.، عظیم زاده، م.، حوری، م.، ۱۳۸۹ . بررسی ترکیبات موثر و خواص آنتی اکسیدانی اسانس گیاه دارویی زیره سیاه. مجله علمی پژوهشی دانشگاه علوم پزشکی شهید صدوقی یزد، 18(۳)، ۲۹۱-۲۸۴.
قادری، س.، فلاحتی حسین آباد، ا.، سرایلو، م‌.ح.، قنبری، و.، 1391. بررسی ترکیبات و اثرضدباکتریایی اسانس سه گیاه گشنیز، بومادران و شوید در شرایط آزمایشگاهی. مجله علوم پزشکی شهرکرد،14(5)، 82 -74.
صبورا، ع.، احمدی، ا.، زینالی، ا.، پارسا، م.، ۱۳۹۳ . مقایسه‌ محتوای ترکیبات فنلی، فلاونوئیدی و فعالیت آنتی‌اکسیدانی اندام هوایی دو جمعیت گیاه بشقابی سنبله‌ای (Scutellaria Pinnatifida) در شمال ایران. مجله دانشگاه علوم پزشکی رفسنجان، ۱۳ (۳)، ۲۴۹-۲۶۶.
برومند، ع.، حامدی، م.، امام جمعه، ز.، رضوی، س.ه.، گلمکانی، م.ت.، 1387 . بررسی خاصیت ضدمیکروبی اسانس بذرهای شوید(graveolens Anethum) و گشنیز(sativum Coriangrum) برروی استافیلوکوکوس اورئوس، اشرشیاکلیH7:O157، سالمونلا تیفی‌موریوم با استفاده از آزمایش حساسیت رقت در محیط مایع. پژوهش‌های علوم و صنایع غذایی ایران، 4 (1)، 68-59.
فرشباف درهمی، س.، قیامی‌راد، م.، رازق، م.، 1395 . بررسی مقایسه‌ای تأثیر ضدباکتریایی عصاره‌های آبی و الکلی گشنیز (Coriandrum sativum) بر روی برخی باکتری‌های پاتوژن. بهداشت مواد غذایی،6 (23)، 42-35.
Afsharzadeh, M., Naderinasab, M., Najaran, Z. T., Barzin, M., & Emami, S. A., 2013. In-vitro antimicrobial activities of some iranian conifers. Iranian Journal of Pharmaceutical Research, 12(1), 63.
‏ Alves-Silva, J. M., dos Santos, S. M. D., Pintado, M. E., Perez-Álvarez, J. A., Fernandez-Lopez, J., & Viuda-Martos, M., 2013. Chemical composition and in vitro antimicrobial, antifungal and antioxidant properties of essential oils obtained from some herbs widely used in Portugal. Food Control, 32(2), 371-378.‏
Azhdarzadeh, F., & Hojjati, M., 2016. Chemical composition and antimicrobial activity of leaf, ripe and unripe peel of bitter orange (Citrus aurantium) essential oils. Nutrition and Food Sciences Research, 3(1), 43-50.‏
Alizadeh Behbahani, B., & Fooladi, A. A. I., 2018. Antibacterial activities, phytochemical analysis and chemical composition Makhlaseh extracts against the growth of some pathogenic strain causing poisoning and infection. Microbial Pathogenesis, 114, 204-208.‏
Alizadeh Behbahani, B., Shahidi, F., Yazdi, F. T., Mortazavi, S. A., & Mohebbi, M., 2017. Use of Plantago major seed mucilage as a novel edible coating incorporated with Anethum graveolens essential oil on shelf life extension of beef in refrigerated storage. International Journal of Biological Macromolecules, 94, 515-526.‏
Alizadeh Behbahani, B., Yazdi, F. T., Noorbakhsh, H., Riazi, F., Jajarmi, A., & Yazdi, F. T., 2016. Study of the antibacterial activity of methanolic and aqueous extracts of Myrtus communis on pathogenic strains causing infection. Zahedan Journal of Research in Medical Sciences, 18(2), 5989.‏
Brand-Williams, W., Cuvelier, M. E., & Berset, C. L. W. T., 1995. Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology, 28(1), 25-30.‏
Calo, J. R., Crandall, P. G., O'Bryan, C. A., & Ricke, S. C., 2015. Essential oils as antimicrobials in food systems–A review. Food Control, 54, 111-119.‏
Delaquis, P. J., Stanich, K., Girard, B., & Mazza, G., 2002. Antimicrobial activity of individual and mixed fractions of dill, cilantro, coriander and eucalyptus essential oils. International Journal of Food Microbiology, 74(1-2), 101-109.‏
Dua, A., Garg, G., Kumar, D., & Mahajan, R., 2014. Polyphenolic composition and antimicrobial potential of methanolic coriander (Coriandrum sativum) seed extract. International Journal of Pharmaceutical Sciences and Research, 5(6), 2302.‏
Duman, A. D., Telci, I., Dayisoylu, K. S., Digrak, M., Demirtas, İ., & Alma, M. H., 2010. Evaluation of bioactivity of linalool-rich essential oils from Ocimum basilucum and Coriandrum sativum varieties. Natural Product Communications, 5(6), 969-974.‏
Eikani, M. H., Golmohammad, F., & Rowshanzamir, S., 2007. Subcritical water extraction of essential oils from coriander seeds (Coriandrum sativum L.). Journal of Food Engineering, 80(2), 735-740.‏
Emamghoreishi, M., & Heidari-Hamedani, G., 2006. Sedative-hypnotic activity of extracts and essential oil of coriander seeds. Iranian Journal of Medical Sciences, 31(1), 22-27.‏
Emami, S. A., Javadi, B., & Hassanzadeh, M. K., 2007. Antioxidant Activity of the Essential Oils of Different Parts of Juniperus communis. subsp. hemisphaerica. and Juniperus oblonga. Pharmaceutical Biology, 45(10), 769-776.‏
Farah, H., Elbadrawy, E., & Al-Atoom, A. A., 2015. Evaluation of anti-oxidant and antimicrobial activities of ethanolic extracts of parsley (Petroselinum erispum) and coriander (Coriandrum sativum) plants grown in saudi arabia. International Journal of Advanced Research, 3, 1244-1255.‏
Fayed, S. A., 2009. Antioxidant and anticancer activities of Citrus reticulate (Petitgrain Mandarin) and Pelargonium graveolens (Geranium) essential oils. Research Journal of Agriculture and Biological Sciences, 5(5), 740-747.
‏ Kähkönen, M. P., Hopia, A. I., Vuorela, H. J., Rauha, J. P., Pihlaja, K., Kujala, T. S., & Heinonen, M., 1999. Antioxidant activity of plant extracts containing phenolic compounds. Journal of Agricultural and Food Chemistry, 47(10), 3954-3962.‏
Kaur, C., & Kapoor, H. C., 2002. Anti‐oxidant activity and total phenolic content of some Asian vegetables. International Journal of Food Science and Technology, 37(2), 153-161.‏
Khalil, N., Ashour, M., Fikry, S., Singab, A. N., & Salama, O., 2018. Chemical composition and antimicrobial activity of the essential oils of selected Apiaceous fruits. Future Journal of Pharmaceutical Sciences, 4(1), 88-92.‏
Laribi, B., Kouki, K., M'Hamdi, M., & Bettaieb, T., 2015. Coriander (Coriandrum sativum L.) and its bioactive constituents. Fitoterapia, 103, 9-26.‏
Mansouri, N., Aoun, L., Dalichaouche, N., & Hadri, D., 2018. Yields, chemical composition, and antimicrobial activity of two Algerian essential oils against 40 avian multidrug-resistant Escherichia coli strains. Veterinary World, 11(11), 1539.‏
Matasyoh, J. C., Maiyo, Z. C., Ngure, R. M., & Chepkorir, R., 2009. Chemical composition and antimicrobial activity of the essential oil of Coriandrum sativum. Food Chemistry, 113(2), 526-529.‏
Msaada, K., Hosni, K., Taarit, M. B., Chahed, T., Kchouk, M. E., & Marzouk, B. (2007). Changes on essential oil composition of coriander (Coriandrum sativum L.) fruits during three stages of maturity. Food Chemistry, 102(4), 1131-1134.‏
Nejad Ebrahimi, S., Hadian, J., & Ranjbar, H. (2010). Essential oil compositions of different accessions of Coriandrum sativum L. from Iran. Natural Product Research, 24(14), 1287-1294.‏
Noshad, M., Hojjati, M., & Alizadeh Behbahani, B., 2018. Black Zira essential oil: Chemical compositions and antimicrobial activity against the growth of some pathogenic strain causing infection. Microbial Pathogenesis, 116, 153-157.‏
Prabuseenivasan, S., Jayakumar, M., & Ignacimuthu, S., 2006. In vitro antibacterial activity of some plant essential oils. BMC Complementary and Alternative Medicine, 6(1), 39.‏
Ravi, R., Prakash, M., & Bhat, K. K., 2007. Aroma characterization of coriander (Coriandrum sativum L.) oil samples. European Food Research and Technology, 225(3-4), 367-374.‏
Saxena, S. N., Sharma, Y. K., Rathore, S. S., Singh, K. K., Barnwal, P., Saxena, R., ... & Anwer, M. M., 2015. Effect of cryogenic grinding on volatile oil, oleoresin content and anti-oxidant properties of coriander (Coriandrum sativum L.) genotypes. Journal of Food Science and Technology, 52(1), 568-573.‏
Shalaby, E. A., Nasr, N. F., & El Sherief, S. M., 2011. An in vitro study of the antimicrobial and antioxidant efficacy of some nature essential oils. Journal of Medicinal Plants Research, 5(6), 922-931.‏
Shan, B., Cai, Y. Z., Sun, M., & Corke, H., 2005. Antioxidant capacity of 26 spice extracts and characterization of their phenolic constituents. Journal of Agricultural and Food Chemistry, 53(20), 7749-7759.‏
Silva, F., Ferreira, S., Duarte, A., Mendonca, D. I., & Domingues, F. C., 2011. Antifungal activity of Coriandrum sativum essential oil, its mode of action against Candida species and potential synergism with amphotericin B. Phytomedicine, 19(1), 42-47.‏
Tabatabaei-Yazdi, F., Alizadeh-Behbahani, B., & Zanganeh, H., 2015. The comparison among antibacterial activity of Mespilus germanica extracts and number of common therapeutic antibiotics “in vitro”. Zahedan Journal of Research in Medical Sciences, 17(12), 5190.‏
Tajkarimi, M. M., Ibrahim, S. A., & Cliver, D. O., 2010. Antimicrobial herb and spice compounds in food. Food Control, 21(9), 1199-1218.‏
Teshale, C., Hussien, J., & Jemal, A., 2013. Antimicrobial activity of the extracts of selected Ethiopian aromatic medicinal plants. Spatula DD, 3(4), 175-180.‏
Wangensteen, H., Samuelsen, A. B., & Malterud, K. E., 2004. Antioxidant activity in extracts from coriander. Food Chemistry, 88(2), 293-297.‏
Wong, P. Y., & Kitts, D. D., 2006. Studies on the dual antioxidant and antibacterial properties of parsley (Petroselinum crispum) and cilantro (Coriandrum sativum) extracts. Food Chemistry, 97(3), 505-515.‏
Yeganegi, M., Yazdi, F. T., Mortazavi, S. A., Asili, J., Alizadeh Behbahani, B., & Beigbabaei, A., 2018. Equisetum telmateia extracts: Chemical compositions, antioxidant activity and antimicrobial effect on the growth of some pathogenic strain causing poisoning and infection. Microbial Pathogenesis, 116, 62-67.‏
CAPTCHA Image