نوع مقاله : مقاله پژوهشی فارسی

نویسندگان

1 گروه شیمی، دانشگاه زنجان، زنجان، ایران.

2 گروه علوم و صنایع غذایی، فناوری مواد غذایی، دانشگاه زنجان، زنجان، ایران.

چکیده

در میان پلیمرهای زیست‌تخریب‌پذیر، استفاده از نشاسته به علت قیمت ارزان و دسترسی آسان از اهمیت به‌سزایی برخوردار است، اما به علت مقاومت کم و آبدوستی زیاد در این بیوپلیمر، هنوز استفاده از آن در صنعت بسته‌بندی عملیاتی نشده است. هدف از این پژوهش، اصلاح ویژگی‌های آبدوستی و مکانیکی فیلم نشاسته با استفاده هم‌زمان از اسید اولئیک، نانو دی‌اکسید تیتانیوم (TiO2) و پرتو فرابنفش (UV-C) بود. در این پژوهش، محلولِ نشاسته- اسیداولئیک- TiO2 تهیه؛ و به‌منظور بهبود خصوصیات کاربردی آن، این محلول در بازه‌های زمانی (صفر، 30، 60 و 90 دقیقه) توسط پرتوUV-C  اصلاح گردید، سپس فیلم آن به روش قالب‌گیری محلول تهیه شد. جهت بررسی خصوصیات کاربردی فیلم در بسته‌بندی مواد غذایی ضخامت، مقاومت مکانیکی، زاویه تماس، نفوذپذیری نسبت به بخارآب، جذب رطوبت، محتوای رطوبت و حلالیت فیلم‌ها مورد بررسی قرار گرفتند. آزمون‌ها در قالب طرح کاملا تصادفی اجرا، و نتایج آن به روش دانکن مورد مقایسه قرار گرفتند. نتایج نشان دادند، که با افزودن اسید اولئیک و TiO2 به محلول نشاسته، زاویه تماس به‌طور قابل‌ملاحظه‌ای از 26/72 به 34/90 درجه افزایش و نفوذپذیری نسبت به بخارآب و جذب رطوبت فیلم‌های نشاسته‌ای کاهش می‌یابد. در مطالعه خواص مکانیکی نیز مشاهده شد که با افزودن اسید اولئیک و TiO2، مقاومت کششی و الاستیسیته کاهش و کشش‌پذیری و انرژی کششی تا لحظه پاره شدن افزایش یافته است. با اعمال پرتودهی در بازه زمانی کوتاه‌مدت (30 دقیقه)، تمامی پارامترهای مربوط به خواص مکانیکی افزایش، و حلالیت به آب و جذب رطوبت فیلم‌های نشاسته‌ای کاهش یافتند. به‌نظر می‌رسید، استفاده همزمان از UV-C و TiO2 باعث بهبود اثر پرتو UV-C جهت ایجاد اتصالات عرضی در ماتریس بیوپلیمر به صورت نشاسته- نشاسته و نشاسته- اسید اولئیک شود؛ با این حال، استفاده از TiO2 باعث تشدید اثر پرتوی UV-C و تسریع تغییرات آن در بازه زمانی کوتاه‌تری (30 دقیقه) شد. به‌طور کلی به‌منظور بهبود خاصیت آبگریزی وخواص مکانیکی فیلم نشاسته، استفاده از اسید اولئیک و TiO2 به‌صورت توأم بهترین نتایج این پژوهش را در برداشته است. از این رو یک گام رو به جلو برای استفاده صنعتی از نشاسته در بسته‌بندی مواد غذایی به حساب می‌آید.

کلیدواژه‌ها

موضوعات

  1. Almasi, H., Ghanbarzadeh, B., & Pezeshki, N. A. (2009). Improving the physical properties of starch and starch–carboxymethyl cellulose composite biodegradable films. Iranian Journal of Food Science And Technology, 6(3), 1-11.
  2. Hassannia-Kolaee, M. Khodaiyan F. Pourahmad, R & Shahabi-Ghahfarokhi, I. (2015). Functional Properties of Composite Edible Film Based Made with Whey Protein-Pullulan. Journal of Agricultural Engineering Research,16(3),45-56
  3. Jahangir-Esfahani,H, Shahabi-Ghahfarrokhi, I & Pourata, R. (2020) Modification of hydrophilic properties of starch film by simultaneous use of oleic acid and UV ray.Food Research, 29 (4),125-138

4.       Jahangir Esfahani, H., Shahabi-Ghahfarrokhi, I. (2018). A Review of the Methods for Modification of Hydrophilic Properties of Starch Based Biopolymers as a Biodegradable Food Packaging Material.9(34),32-45

  1. Jahangir-Esfahani, H., Shahabi-Ghahfarrokhi, I & Pourata, R. (2020). Photochemical Modification of Starch-Oleic Acid Composite as a Biodegradable Film in Food Packaging.Iranian Journal of Biosystem Engineering.51(3),643-654
  2. Ashton, H., & Fletcher, D. (1962). Development and use of color standards for egg yolks. Poultry science, 41(6), 1903-1909. https://doi.org/10.3382/ps.0411903
  3. Campos, A. d., Marconcini, J., Martins-Franchetti, S., & Mattoso, L. (2012). The influence of UV-C irradiation on the properties of thermoplastic starch and polycaprolactone biocomposite with sisal bleached fibers. Polymer degradation and stability, 97(10), 1948-1955. https://doi.org/10.1016/j.polymdegradstab.2011.11.010
  4. Díaz, O., Candia, D., & Cobos, Á. (2016). Effects of ultraviolet radiation on properties of films from whey protein concentrate treated before or after film formation. Food Hydrocolloids, 55, 189-199. https://doi.org/10.1016/j.foodhyd.2015.11.019
  5. Fei, P., Shi, Y., Zhou, M., Cai, J., Tang, S., & Xiong, H. (2013). Effects of nano‐TiO2 on the properties and structures of starch/poly (ε‐caprolactone) composites. Journal of Applied Polymer Science, 130(6), 4129-4136. https://doi.org/10.1002/app.39695
  6. Gennadios, A., Rhim, J., Handa, A., Weller, C., & Hanna, M. (1998). Ultraviolet radiation affects physical and molecular properties of soy protein films. Journal of food science, 63(2), 225-228. https://doi.org/10.1111/j.1365-2621.1998.tb15714.x
  7. Ghanbarzadeh, B., & Almasi, H. (2011). Physical properties of edible emulsified films based on carboxymethyl cellulose and oleic acid. International journal of biological macromolecules, 48(1), 44-49. https://doi.org/10.1016/j.ijbiomac.2010.09.014
  8. Ghasemlou, M., Khodaiyan, F., Oromiehie, A., & Yarmand, M. S. (2011). Characterization of edible emulsified films with low affinity to water based on kefiran and oleic acid. International journal of biological macromolecules, 49(3), 378-384. https://doi.org/10.1016/j.ijbiomac.2011.05.013
  9. Goudarzi, V., & Shahabi-Ghahfarrokhi, I. (2017). Photo-producible and photo-degradable starch/TiO2 bionanocomposite as a food packaging material: Development and characterization. International journal of biological macromolecules. https://doi.org/10.1016/j.ijbiomac.2017.08.058
  10. Goudarzi, V., Shahabi-Ghahfarrokhi, I., & Babaei-Ghazvini, A. (2017). Preparation of ecofriendly UV-protective food packaging material by starch/TiO 2 bio-nanocomposite: Characterization. International journal of biological macromolecules, 95, 306-313. https://doi.org/10.1016/j.ijbiomac.2016.11.065
  11. Goudarzi, V., & Shahabi-Ghahfarrokhi, I. (2017). Production of starch film by photochemical reactions: Physicochemical characterization. Food Research,26(3),519-530.
  12. Jamal Abadi, M., & Sarem Nejad, S. (2015). Investigation on the Physicochemical Properties of Ultrasound Treated Wheat Starch. Food Science and Technology, 13(53), 127-136.
  13. Kim, J. K., Jo, C., Park, H. J., & Byun, M. W. (2008). Effect of gamma irradiation on the physicochemical properties of a starch-based film. Food Hydrocolloids, 22(2), 248-254. https://doi.org/10.1016/j.foodhyd.2006.11.010
  14. Kovács, V., Gondor, O. K., Szalai, G., Majláth, I., Janda, T., & Pál, M. (2014). UV-B radiation modifies the acclimation processes to drought or cadmium in wheat. Environmental and experimental botany, 100, 122-131. https://doi.org/10.1016/j.envexpbot.2013.12.019
  15. Li, X.-M., Reinhoudt, D., & Crego-Calama, M. (2007). What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces. Chemical Society Reviews, 36(8), 1350-1368. DOI:https://doi.org/10.1039/B602486F
  16. Oleyaei, S, A., Ghanbarzadeh, B., Moayed, A, A., Poursani, P, & Khatamian, M. (2015). Preparation and Characterization of Nanostructural and Physicochemical Properties of Starch-TiO2 Biocomposite Films. Innovative Food Technologies. 2 (4),87-101
  17. Li, Y., Jiang, Y., Liu, F., Ren, F., Zhao, G., & Leng, X. (2011). Fabrication and characterization of TiO2/whey protein isolate nanocomposite film. Food Hydrocolloids, 25(5), 1098-1104. https://doi.org/10.1016/j.foodhyd.2010.10.006
  18. Li, Z., Mi, L., Wang, P.-N., & Chen, J.-Y. (2011). Study on the visible-light-induced photokilling effect of nitrogen-doped TiO 2 nanoparticles on cancer cells. Nanoscale research letters, 6(1), 356. https://doi.org/10.1186/1556-276X-6-356
  19. Li, Z., Pan, X., Wang, T., Wang, P.-N., Chen, J.-Y., & Mi, L. (2013). Comparison of the killing effects between nitrogen-doped and pure TiO2 on HeLa cells with visible light irradiation. Nanoscale research letters, 8(1), 96. https://doi.org/10.1186/1556-276X-8-96
  20. Linsebigler, A. L., Lu, G., & Yates Jr, J. T. (1995). Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chemical reviews, 95(3), 735-758. https://doi.org/10.1021/cr00035a013
  21. Linthorst, J. (2010). An overview: origins and development of green chemistry. Foundations of chemistry, 12(1), 55-68. https://doi.org/10.1007/s10698-009-9079-4
  22. Lv, J., Shen, Y., Peng, L., Guo, X., & Ding, W. (2010). Exclusively selective oxidation of toluene to benzaldehyde on ceria nanocubes by molecular oxygen. Chemical communications, 46(32), 5909-5911. https://doi.org/10.1039/C0CC00777C
  23. Mohanty, A., Misra, M., & Hinrichsen, G. (2000). Biofibers, biodegradable polymers and biocomposites: an overview. Macromolecular materials and Engineering, 276(1), 1-24. https://doi.org/10.1002/(SICI)1439-2054(20000301)276:1<1::AID-MAME1>3.0.CO;2-W
  24. Ojagh, S. M., Rezaei, M., Razavi, S. H., & Hosseini, S. M. H. (2010). Development and evaluation of a novel biodegradable film made from chitosan and cinnamon essential oil with low affinity toward water. Food Chemistry, 122(1), 161-166. https://doi.org/10.1016/j.foodchem.2010.02.033
  25. Ozdemir, M., & Floros, J. D. (2004). Active food packaging technologies. Critical reviews in food science and nutrition, 44(3), 185-193. https://doi.org/10.1080/10408690490441578
  26. Shahabi-Ghahfarrokhi, I., & Babaei-Ghazvini, A. (2018). Using photo-modification to compatibilize nano-ZnO in development of starch-kefiran-ZnO green nanocomposite as food packaging material. International journal of biological macromolecules. 124, 922-930. https://doi.org/10.1016/j.ijbiomac.2018.11.241
  27. Shahabi-Ghahfarrokhi, I., Khodaiyan, F., Mousavi, M., & Yousefi, H. (2015). Effect of γ-irradiation on the physical and mechanical properties of kefiran biopolymer film. International journal of biological macromolecules, 74, 343-350. https://doi.org/10.1016/j.ijbiomac.2014.11.038
  28. Singh, J., Kaur, L., & McCarthy, O. (2007). Factors influencing the physico-chemical, morphological, thermal and rheological properties of some chemically modified starches for food applications—A review. Food Hydrocolloids, 21(1), 1-22. https://doi.org/10.1016/j.foodhyd.2006.02.006
  29. Sionkowska, A., Skopinska-Wisniewska, J., Planecka, A., & Kozlowska, J. (2010). The influence of UV irradiation on the properties of chitosan films containing keratin. Polymer degradation and stability, 95(12), 2486-2491. https://doi.org/10.1016/j.polymdegradstab.2010.08.002
  30. Slavutsky, A. M., & Bertuzzi, M. A. (2015). Formulation and characterization of nanolaminated starch based film. LWT Food Science and Technology, 61(2), 407-413. https://doi.org/10.1016/j.lwt.2014.12.034
  31. Tang, S., Zou, P., Xiong, H., & Tang, H. (2008). Effect of nano-SiO2 on the performance of starch/polyvinyl alcohol blend films. Carbohydrate Polymers, 72(3), 521-526. https://doi.org/10.1016/j.carbpol.2007.09.019
  32. Vargas, M., Albors, A., Chiralt, A., & González-Martínez, C. (2009). Characterization of chitosan–oleic acid composite films. Food Hydrocolloids, 23(2), 536-547. https://doi.org/10.1016/j.foodhyd.2008.02.009
  33. Wang, X.-Y., Mertz, D., Blanco-Andujar, C., Bora, A., Ménard, M., Meyer, F., Bégin-Colin, S. (2016). Optimizing the silanization of thermally-decomposed iron oxide nanoparticles for efficient aqueous phase transfer and MRI applications. RSC Advances, 6(96), 93784-93793. DOI: 1039/C6RA18360C
  34. Zhou, J., Wang, S., & Gunasekaran, S. (2009). Preparation and characterization of whey protein film incorporated with TiO2 nanoparticles. Journal of food science74(7), N50-N56. https://doi.org/10.1111/j.1750-3841.2009.01270.x
CAPTCHA Image