نوع مقاله : مقاله پژوهشی فارسی

نویسندگان

1 گروه علوم و صنایع غذایی، واحد ورامین- پیشوا، دانشگاه آزاد اسلامی، ورامین، ایران.

2 پژوهشگاه شیمی و مهندسی شیمی ایران، تهران، ایران.

چکیده

هدف از این پژوهش، بررسی اثر افزودن پپتید زیست فعال حاصل از هیدرولیز آنزیمی آب ماست بر ویژگی‌های کیفی دوغ بود. پپتید حاصل از هیدرولیز پروتئین آب ماست با تریپسین، که با استفاده از RP-HPLC تفکیک (جزء به جزء) شده بود، مورد استفاده قرار گرفت. غلظت­های مختلف این پپتید (20/12، 4/24 و mg/mL 8/48) به دوغ اضافه گردید. به‌منظور بررسی اثر ضدمیکروبی این پپتید، تراکم CFU/mL 106 از باکتری‌های استافیلوکوکوس اورئوس و اشریشیا کلی به دوغ تلقیح شد. طی 60 روز نگهداری، شمارش باکتریایی (استافیلوکوکوس اورئوس و اشریشیا کلی)، pH، اسیدیته، مهار رادیکال کاتیون ABTS (2, 2′-azinobis-3-ethylbenzothiazoline-6-sulfonic acid)  و خواص حسی نمونه‌های دوغ ارزیابی گردید. نتایج نشان داد که طی دوره نگهداری، تعداد باکتری‌های استافیلوکوکوس اورئوس و اشریشیا کلی ، مقادیر pH و مهار رادیکال کاتیون ABTS در کلیه نمونه‌ها به‌طور معنی‌داری کاهش یافت (05/0>p)، ولی اسیدیته افزایش پیدا کرد. پپتید حاصل از آب ماست فعالیت‌های آنتی‌اکسیدانی و ضدباکتریایی خوبی در نمونه‌های دوغ نشان داد، به‌طوری که با افزایش سطح پپتید در نمونه‌ها، مهار رادیکال به‌طور معنی‌داری افزایش و شمارش باکتری‌های بیماری‌زا کاهش یافت (05/0>p). تیمار حاوی بالاترین سطح پپتید  mg/mL) 8/48) در روز بیستم انبارمانی، فاقد استافیلوکوکوس اورئوس و اشریشیا کلی بود. نتایج ارزیابی حسی نشان داد که در نمونه شاهد (فاقد پپتید زیست فعال) و نمونه حاوی پایین‌ترین سطح پپتید mg/mL) 20/12)، امتیاز ویژگی‌های حسی طی دوره نگهداری کاهش یافت، ولی استفاده از بالاترین سطح پپتید آب ماست در فرمولاسیون دوغ توانست سرعت اُفت ویژگی‌های حسی را طی دوره نگهداری کاهش داده و کیفیت محصول را حفظ نماید. بر طبق نتایج حاصله، غلظت  mg/mL 8/48 پپتید را می‌توان به‌عنوان بهترین سطح جهت غنی‌سازی دوغ انتخاب کرد. بنابراین پپتید حاصل از هیدرولیز آنزیمی آب ماست می‌تواند به‌عنوان عامل آنتی‌اکسیدانی و ضدمیکروبی طبیعی در محصولات لبنی مانند دوغ مورد استفاده قرار گیرد.

کلیدواژه‌ها

  1. Adebayo, C. O., Aderiye, B. I. and Akpor, O. B. (2014). Assessment of bacterial and fungal spoilage of some Nigerian fermented and unfermented foods. African Journal of Food Science, 8(3): 140-147.
  2. Agyei, D. and Danquah, M. K. (2012). Rethinking food- derived bioactivepeptides for antimicrobial and immunomodulatory activities. Trends in Food Science and Technology, 23(2): 62-69. https://doi.org/10.1016/j.tifs.2011.08.010
  3. Ahmadi, S. M., Moslehi Shad, M. and Rahimi, A. (2018). Investigation of antimicrobial activity of oleoresin essential oil on Staphylococcus aureus, Escherichia coli, Kluyveromyces marxianus and Penicillium notatum and its effect on Iranian doogh shelf life. Journal of Food Science and Technology, 15, (85): 114-124 (in Persian).
  4. Alemán, A., Pérez-Santín, E., Bordenave- Juchereau, S., Arnaudin, I., Gómez- Guillén, M. C. and Montero, P. (2011). Squid gelatin hydrolysates with antihypertensive, anticancer and antioxidant activity. Food Research International, 44: 1044-1051. https://doi.org/10.1016/j.foodres.2011.03.010
  5. Anonymous, (2006a). Institute of Standards and Industrial Research of Iran. Milk and milk products- Determination of acidity and pH. National standard No. 2852 (in Persian).
  6. Anonymous, (2006b). Institute of Standards and Industrial Research of Iran. The comprehensive method for enumeration of coagulase positive Staphylococcus (Staphylococcus aureus and other species). National standard No. 6806-3 (in Persian).
  7. Anonymous, (2008). Institute of Standards and Industrial Research of Iran. Plain Doogh- Characteristics and test methods. National standard No. 2453 (in Persian).
  8. Asoodeh, A., Memarpoor- Yazdi, M. and Chamani, J. (2012). Purification and characterization of angiotensin I converting enzyme inhibitory peptides from lysozyme hydrolysates. Food Chemistry, 131: 291-295. https://doi.org/10.1016/j.foodchem.2011.08.039
  9. Athmani, N., Dehiba, F., Allaoui, A., Barkia, A., Bougatef, A. and Lamri-Senhadji, M. Y. (2015). Sardina pilchardus and Sardinellaaurita protein hydrolysates reduce cholesterolemia and oxidative stress in rat fed high cholesterol diet. Journal of Experimental and Integrative Medicine, 5(1): 47-54.
  10. Bachrouri, M., Quinto, E. J. and Mora, M. T. (2002). Survival of Escherichia coli O157: H7 during storage of yogurt at different temperatures. Journal of Food Science, 67(5): 1899-1903. https://doi.org/10.1111/j.1365-2621.2002.tb08743.x
  11. Chen, H. M., Muramoto, K., Yamauchi, F., Fujimoto, K. and Nokihara, K. (1998). Antioxidative properties of histidine-containing peptides designed from peptide fragments found in the digests of a soybean protein. Journal of Agriculture and Food Chemistry, 46: 49-53. https://doi.org/10.1021/jf970649w
  12. Christopher, M. D., Reddy, V. P. and Venkateswarlu, K. (2009). Viability during storage of two Bifidobacterium bifidum strains in set and stirred yoghurts containing whey protein concentrate. Natural Products, 8: 25-31.
  13. El Sayed, M. I., Awad, S., Wahba, A., El Attar, A. M. and Zeidan, M. (2014). Utilization of milk protein hydrolysate in functional beverages. Alexandra Science Exchange Journal, 35(1): 39-49. DOI: 21608/asejaiqjsae.2014.2572
  14. Farvin, K. H. S., Baron, C. P., Nielsen, N. S. and Jacobsen, C. (2010). Antioxidant activity of yoghurt peptides: Part 1-in vitro assays and evaluation in ω-3 enriched milk. Food Chemistry, 123: 1081-1089. https://doi.org/10.1016/j.foodchem.2010.05.067
  15. Gómez- Guillén, M. C., López-Caballero, M. E., López De Lacey, A., Alemán, A., Giménez, B. and Montero, P. (2010). Antioxidant and antimicrobial peptide fractions from squid and tuna skin gelatin. In: Bihan, E. L., Koueta, N. (Eds.), Sea By-Products as a Real Material: New Ways of Application. Transworld Research Network Signpost, Kerala, pp. 89-115.
  16. Guler- Akin, B. and Serdar Akin, M. (2005). Effect of cysteine and different incubation temperatures on the microflora, chemical composition and sensory characteristic of bio-yoghurt made from goat's milk. Food Chemistry, 100: 788-793. https://doi.org/10.1016/j.foodchem.2005.10.038
  17. Hancock, R. E. W. and Sahl, H. G. (2006). Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Natural Biotechnology, 24: 1551-1557. https://doi.org/10.1038/nbt1267
  18. Harnedy, P. A. and Fitz Gerald, R. J. (2012). Bioactive peptides from marine processing waste and shellfish: A review. Journal of Functional Foods, 4(1): 6-24. https://doi.org/10.1016/j.jff.2011.09.001
  19. Kailasapathy, K. (2006). Survival of free and encapsulated probiotic bacteria and their effect on the sensory properties of yoghurt. LWT-Food Science and Technology, 39: 1221-1227. https://doi.org/10.1016/j.lwt.2005.07.013
  20. Korhonen, H.J. and Marnila, P. (2013). Milk bioactive proteins and peptides. In: Park,Y.W., Haenlein, G.F.W. (Eds.), Milk and Dairy Products in Human Nutrition. John Wiley & Sons, Oxford, pp. 148-171. https://doi.org/10.1002/9781118534168.ch8
  21. Kumar, D., Chatli, M. K., Singh, R., Mehta, N. and Kumar, P. (2016). Effects of incorporation of camel milk casein hydrolysate on quality, oxidative and microbial stability of goat meat emulsion during refrigerated (4± 1◦C) storage. Small Ruminant Research, 144: 149-157. https://doi.org/10.1016/j.smallrumres.2016.09.008
  22. Ma, Y. S., Zhao, H. J. and Zhao, X. H. (2019). Comparison of the effects of the alcalase-hydrolysates of caseinate, and of fish and bovine gelatins on the acidification and textural features of set-style skimmed yogurt-type products. Foods, 8: 1-11. https://doi.org/10.3390/foods8100501
  23. Miliauskas, G., Venskutonis, P. R. and Beek, T. A. V. (2004). Screening of radical scavenging activity of some medicinal and aromatic plant extracts. Food Chemistry, 85: 231-237. https://doi.org/10.1016/j.foodchem.2003.05.007
  24. Moller, N. P., Scholz- Ahrens, K. E., Roos, N. and Schrezenmeir, J. (2008). Bioactive peptides and proteins from foods: Indication for health effects. European Journal of Nutrition, 47: 171-182. https://doi.org/10.1007/s00394-008-0710-2
  25. Mora, L., Escudero, E., Fraser, P. D., Aristoy, M. C. and Toldrá, F. (2014a). Proteomic identification of antioxidant peptides from 400 to 2500 Da generated in Spanish dry-cured ham contained in a size-exclusion chromatography fraction. Food Research International, 56: 68-76. https://doi.org/10.1016/j.foodres.2013.12.001
  26. Mora, L., Reig, M. and Toldrá, F. (2014b). Bioactive peptides generated from meat industry by-products. Food Research International, 65: 334-349. https://doi.org/10.1016/j.foodres.2014.09.014
  27. Panesar, P. and Shinde, C. H. (2011). Effect of storage on synersis, pH, Lactobacillus acidophilus count, bifidobacterium count of Aloe vera fortified probiotic yoghurt. Current Research in Dairy Science, 11: 935-942.
  28. Rao, S., Sun, J., Liu, Y., Zeng, H., Su, Y. and Yang, Y. (2012). ACE inhibitory peptides and antioxidant peptides derived from in vitro digestion hydrolysate of hen egg-white lysozyme. Food Chemistry, 135: 1245-1252. https://doi.org/10.1016/j.foodchem.2012.05.059
  29. Saei-Dehkordi, S. S., Tajik, H., Moradi, M. and Khaleghi- Sigaroodi, F. (2010). Chemical composition of essential oils in Zatoria multifloro Biomass from different parts of Iran and their radical scavenging and antimicrobial activity. Food and Chemical Toxicology, 48(6): 1562-1567. https://doi.org/10.1016/j.fct.2010.03.025
  30. Sah, N. P., Vasiljevic, T., McKechnie, S. and Donkor, O. N. (2016). Antibacterial and antiproliferative peptides in synbiotic yogurt- Release and stability during refrigerated storage. Journal of Dairy Science, 99: 4233-4242. https://doi.org/10.3168/jds.2015-10499
  31. Sakanaka, S., Tachibana, Y., Ishihara, N. and Juneja, L. R. (2004). Antioxidant activity of egg-yolk protein hydrolysates in linoleic acid oxidation system. Food Chemistry, 86: 99-103. https://doi.org/10.1016/j.foodchem.2003.08.014
  32. Salami, M., Yousefi, R., Ehsani, M. R., Dalgalarrondo, M., Chobert, J., Haertlé, T., Razavi, S.H., Saboury, A. A., Niasari- Naslaji, A. and Moosavi- Movahedi, A. A. (2008). Kinetic characterization of hydrolysis of camel and bovine milk proteins by pancreatic enzymes. International Dairy Journal, 18: 1097-1102. https://doi.org/10.1016/j.idairyj.2008.06.003
  33. Salminen, S., Von Wright, A. and Ouwehand, A. (2004). Lactic acid bacteria: microbiology and functional aspects. 3rd edition. Marcel Dekker Inc. New York.
  34. Sampath Kumar, N., Nazeer, R. A. and Jaiganesh, R. (2011). Purification and bio-chemical characterization of antioxidant peptide from horse mackerel (Magalaspis cordyla) viscera protein. Peptides, 32: 1496-1501. https://doi.org/10.1016/j.peptides.2011.05.020
  35. Sarmadi, B. H. and Ismail, A. (2010). Antioxidative peptides from food proteins: a review. Peptides, 31: 1949-1956. https://doi.org/10.1016/j.peptides.2010.06.020
  36. Shayesteh, F., Ahmad, A. and Usup, G. (2014). Bacteriocin production by a marine strain of Bacillus Sh10: isolation, screening and optimization of culture condition. Biotechnology, 13: 273-281.
  37. Singh, G., Kapoor, I. P. S. and Singh, P. (2011). Effect of volatile oil and oleoresin of anise on the shelf life of yogurt. Journal of Food Process Preserve, 35: 778-783. https://doi.org/10.1111/j.1745-4549.2011.00528.x
  38. Taha, S., El Abd, M., De Gobba, C., Abdel- Hamid, M., Khalil, E. and Hassan, D. (2017). Antioxidant and antibacterial activities of bioactive peptides in buffalo’s yoghurt fermented with different starter cultures. Food Science and Biotechnology, 26(5): 1325-1332. https://doi.org/10.1007/s10068-017-0160-9
  39. Tang, W., Zhang, H., Wang, L., Qian, H. and Qi X. (2015). Targeted separation of antibacterial peptidefrom protein hydrolysate of anchovy cooking waste water byequilibrium dialysis. Food Chemistry, 168: 115-123. https://doi.org/10.1016/j.foodchem.2014.07.027
  40. Won, J. Y., Kim, H. S., Jang, J. A. and Kim, C. H. (2017). Functional properties of yogurt containing specific peptides derived from whey proteins. Journal of Milk Science and Biotechnology, 35(4): 249-254.
  41. Zhuang, Y. and Sun, L. (2011). Preparation of reactive oxygen scavenging peptides from tilapia (Oreochromis niloticus) skin gelatin: optimization using response surface methodology. Journal of Food Science, 76: 483-489. https://doi.org/10.1111/j.1750-3841.2011.02108.x
CAPTCHA Image