نوع مقاله : مقاله پژوهشی فارسی

نویسندگان

گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

چکیده

تغییرات شیمیایی، پایداری اکسایشی و شاخص‌های کیفی نمونه ترکیبی روغن آفتابگردان (SO) و نخل (PO) (PO 35: SO 65 وزنی/وزنی) در دمای°C 180 طی تیمار حرارتی 8 ساعته در حضور آنتی‌اکسیدان‌های اسید گالیک (GA)، متیل گالات (MG)، ترکیب GA+MG (75:25، 50:50 و 25:75) و ترسیوبوتیل هیدروکینون (TBHQ) مورد بررسی قرار گرفت. میانگین داده­ها بر اساس آزمون چند دامنه­ای دانکن در سطح 5 درصد (05/0p<) مقایسه شدند. بررسی خواص شیمیایی نشان داد ساختار اسیدهای چرب SO عمدتا حاوی اسید‌ چرب لینولئیک (53/61 درصد) و اولئیک (50/25 درصد) و برای PO اولئیک (90/41) و پالمیتیک (9/38) می‌باشد؛ همچنین، محتوی کل ترکیبات فنولی (TPC) و توکوفرولی (TTC) نمونه PO به ترتیب 12/53 و 185 و نمونه SO برابر با 01/36 و 490 (µg.g-1) بدست آمد. نتایج آزمون پایداری اکسایشی مبنی بر پارامترهای عدد کربونیل (CV)، عدد دی­ان مزدوج (CDV) و اسیدیته (FFA) مورد تجزیه و تحلیل قرار گرفت. طبق یافته­ها، تمامی پارامترهای CV، CDV و FFA طی فرآیند سرخ کردن با گذشت زمان با سرعت­های متفاوت به طور معناداری افزایش یافتند (05/0>p). همچنین، رابطه معناداری بین 7 تیمار مشاهده شد؛ بدین­صورت که تیمار شاهد و تیمار حاوی آنتی‌اکسیدان سنتزی TBHQ به­ترتیب دارای بیشترین و کمترین میزان اسیدیته بودند. همچنین، محتوی CDV روغن مورد آزمون بدون آنتی‌اکسیدان در حضور GA75+MG25 به اندازه 6/68 درصد کاهش یافت. علاوه­بر­این، سرعت تغییر CV روغن مورد آزمون بدون آنتی­اکسیدان در حضور TBHQ به اندازه 2/70 درصد کاهش یافت. در نتیجه، افزودن جزئی از آنتی­اکسیدان­های طبیعی می­تواند عملکردی رقابتی با آنتی­اکسیدان TBHQ داشته باشد.

کلیدواژه‌ها

موضوعات

  1. Alavi Rafiee, S., Farhoosh, R., & Sharif, A. (2018). Antioxidant activity of gallic acid as affected by an extra carboxyl group than pyrogallol in various oxidative environments. European Journal of Lipid Science and Technology, 120(11), 1800319. https://doi.org/10.1002/ejlt.201800319.
  2. Bordin, K., Kunitake, M.T., Aracava, K.K., & Trindade, C.S.F. (2013). Changes in food caused by deep fat frying-a review. Archivos Latinoamericanos de Nutricion, 63(1), 5-13.
  3. Budilarto, E.S., & Kamal‐Eldin, A. (2015). The supramolecular chemistry of lipid oxidation and antioxidation in bulk oils. European Journal of Lipid Science and Technology, 117(8), 1095-1137. http://doi.org/10.1002/ejlt.201400200.
  4. Crespo, Y.A., Sánchez, L.R.B., Quintana, Y.G., Cabrera, A.S.T., Del Sol, A.B., & Mayancha, D.M.G. (2019). Evaluation of the synergistic effects of antioxidant activity on mixtures of the essential oil from Apium graveolens, Thymus vulgaris L. and Coriandrum sativum L. using simplex-lattice design. Heliyon, 5(6), e01942. https://doi.org/10.1016/j.heliyon.2019.e01942.
  5. Fahimdanesh, M., Ghavami, M., Hemasi, A.H., & Aberomand, P. (2008). Evaluation of phenolic compounds and tocopherols content in some trade Iranian olive oils by HPLC. Iranian Journal of Food Science and Technology, 5(3), 53-59. http://fsct.modares.ac.ir/article-7-1871-en.html.
  6. Farahmandfar, R., & Asnaashari, M. (2018). Assessment of antioxidant activity and kinetic oxidative parameters of syringic acid and gallic acid in sunflower oil. Food Science and Technology, 15(83), 1-14.
  7. Farhoosh, R., Pazhouhanmehr, S., & Poorazrang, H. (2010). Heat stability of the oils from current canola cultivars in Iran. Journal of Food Science and Technology(Iran). http://fsct.modares.ac.ir/article-7-3334-en.html.
  8. Farhoosh, R., & Esmaeilzadeh Kenari, R. (2009). Anti‐rancidity effects of sesame and rice bran oils on canola oil during deep frying. Journal of the American Oil Chemists' Society, 86(6), 539-544. https://doi.org/10.1007/s11746-009-1382-7.
  9. Farhoosh, R., & Kafrani, M.H.T. (2010). Frying performance of the hull oil unsaponifiable matter of Pistacia atlantica mutica. European Journal of Lipid Science and Technology, 112(3), 343-348. https://doi.org/10.1002/ejlt.200900178.
  10. Farhoosh, R., & Moosavi, S.M.R. (2008). Carbonyl value in monitoring of the quality of used frying oils. Analytica Chimica Acta, 617(1-2), 18-21. https://doi.org/10.1016/j.aca.2007.11.049.
  11. Farhoosh, R., & Nyström, L. (2018). Antioxidant potency of gallic acid, methyl gallate and their combinations in sunflower oil triacylglycerols at high temperature. Food Chemistry, 244, 29-35. https://doi.org/1016/j.foodchem.2017.10.025.
  12. Gad, A.S., & El‐Salam, M.H.A. (2010). The antioxidant properties of skim milk supplemented with rosemary and green tea extracts in response to pasteurisation, homogenisation and the addition of salts. International Journal of Dairy Technology, 63(3), 349-355. http://doi.org/1111/j.1471-0307.2010.00585.x.
  13. Gavahian, M., Khaneghah, A.M., Lorenzo, J.M., Munekata, P.E., Garcia-Mantrana, I., Collado, M.C., & Barba, F.J. (2019). Health benefits of olive oil and its components: Impacts on gut microbiota antioxidant activities, and prevention of noncommunicable diseases. Trends in Food Science & Technology, 88, 220-227. https://doi.org/10.1016/j.tifs.2019.03.008.
  14. Hajeb, B. (2018). Comparison of thermal resistance of frying oil and canola oil by principal component of chemometrics analysis. Thesis for receiving «M.Sc» degree On Chemical Engineering, Faculty of Chemical Engineering and Department of Engineering, Islamic Azad University،Science and Research Branch, Tehran, Iran.
  15. Hamedani, F., & Haddad Khodaparast, M.H. (2014). Investigating chemical properties and oxidative stability of kernel oil from Pistacia Khinjuk growing-wild in Iran. Iranian Journal of Research and Innovation in Food Science and Technology, 2(3): 265-278. http://doi.org/1007/s11746-016-2817-6.
  16. https://www.fao.org/3/y2774e/y2774e04.htm.
  17. Huang, C.Y., Chang, Y.J., Wei, P.L., Hung, C.S., & Wang, W. (2021). Methyl gallate, gallic acid-derived compound, inhibit cell proliferation through increasing ROS production and apoptosis in hepatocellular carcinoma cells. PloS One, 16(3), e0248521. https://doi.org/10.1371/journal.pone.0248521.
  18. Jung, M.Y., & Choi, D.S. (2016). Protective effect of gallic acid on the thermal oxidation of corn and soybean oils during high temperature heating. Food Science and Biotechnology, 25, 1577-1582. http://doi.org/1007/s10068-016-0243-z.
  19. Kaviani, M., Niazmand, R., & Shahidi Noghabi, M. (2013). Discarding time evaluation of canola oil based on oxidation indexes during potato deep frying. Research and Innovation in Food Science and Technology, 2(1), 37-50. https://doi.org/10.22101/JRIFST.2013.07.03.213.
  20. Kharazi, S.H., Kenari, R.E., & Amiri, Z.R. (2014). Effect of thermal treatment on chemical changes and oxidative stability of Iranian common virgin olive oil of roodbar region: a study on Zard, Mari and Phishomi. Iranian Food Science & Technology Research Journal, 9(4).
  21. Meda, A., Lamien, C.E., Romito, M., Millogo, J., & Nacoulma, O.G. (2005). Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity. Food Chemistry, 91(3), 571-577. https://doi.org/10.1016/j.foodchem.2004.10.006.
  22. Mehdi Nia Lichani, B., Esmaeilzadeh Kenari, R., & Dinpanah, G. (2018). Extraction of phenolic and tocopherol compounds of Mottaka plant and study of the effect of its extract on the stability of sunflower oil as a synthetic antioxidant substitute. Journal of Food Technology and Nutrition, 15(4): 81-90.
  23. Morelló, J.R., Motilva, M.J., Tovar, M.J., & Romero, M.P. (2004). Changes in commercial virgin olive oil (cv Arbequina) during storage, with special emphasis on the phenolic fraction. Food Chemistry, 85(3), 357-364. http://doi.org/1016/j.foodchem.2003.07.012
  24. Pinho, O., Ferreira, I.M.P.L.V.O., Oliveira, M.B.P.P., & Ferreira, M. A. (2000). Quantification of synthetic phenolic antioxidants in liver pâtés. Food Chemistry, 68(3), 353-357. https://doi.org/10.1016/S0308-8146(99)00205-8
  25. Sepehry, N., Mortazavi, S.A., Sadeghian, A., Mohammadi, M., & Pedram nia, A. (2022). Evaluation of antioxidant and antibacterial properties of essential oil and black cumin extract extracted by clevenger and ultrasound methods. Journal of Food Science and Technology (Iran), 18(121), 57-68. URL:http://fsct.modares.ac.ir/article-7-53459-en.html
  26. Tavakoli, K. (2013). Antioxidant effect of Medlar peel extract on stability of sunflower oil during storage condition and thermal process. Thesis for receiving «M.Sc» degree On Food Science and Technology, Faculty of Science-Department Agricultura, Islamic Azad University، Damghan Branch, Iran.
  27. Wen, Y., Xu, L., Xue, C., Jiang, X., & Wei, Z. (2020). Assessing the impact of oil types and grades on tocopherol and tocotrienol contents in vegetable oils with chemometric methods. Molecules, 25(21), 5076. http://doi.org/3390/molecules25215076
  28. Williams, G.M., Wang, C.X., & Iatropoulos, M.J. (1990). Toxicity studies of butylated hydroxyanisole and butylated hydroxytoluene. II. Chronic feeding studies. Food and Chemical Toxicology, 28(12), 799-806. http://doi.org/1016/0278-6915(90)90052-o
  29. Xu, E., Wang, J., Tang, J., Ruan, S., Ma, S., Qin, Y., & Liu, D. (2022). Heat-induced conversion of multiscale molecular structure of natural food nutrients: A review. Food Chemistry, 369, 130900. http://doi.org/1016/j.foodchem.2021.130900
  30. Xu, Z., Leong, S.Y., Farid, M., Silcock, P., Bremer, P., & Oey, I. (2020). Understanding the frying process of plant-based foods pretreated with pulsed electric fields using frying models. Foods, 9(7), 949. https://doi.org/10.3390/foods9070949
  31. Yanishlieva, N.V., Kamal‐Eldin, A., Marinova, E.M., & Toneva, A.G. (2002). Kinetics of antioxidant action of α- and γ- toco- pherols in sunflower and soybean triacylglycerols. European Journal of Lipid Science and Technology, 104(5), 262-270. https://doi.org/10.1002/1438-9312(200205)104:5<262::AID-EJLT262>3.0.CO;2-B

 

 

 

CAPTCHA Image