نوع مقاله : مقاله پژوهشی فارسی

نویسندگان

گروه علوم وصنایع غذایی، دانشکده کشاورزی، دانشگاه فردوسی مشهد.

چکیده

واکنش گلیکوزیلاسیون غیرآنزیمی (مایلارد) به‌طور گسترده‌ای جهت بهبود ویژگی‌های بیولوژیکی و عملکردی پروتئین‌ها و پلی‏ساکاریدها استفاده شده است. در این پژوهش، پری‏بیوتیک اینولین و قندهای پیش‏ساز آن (گلوکز و فروکتوز) از طریق واکنش مایلارد با کیتوزان گلیکوزیله گردید. تغییرات pH، محصولات حد واسط و نهایی، تغییرات ساختاری، ظرفیت آنتی‌اکسیدانی و ویژگی ضدمیکروبی سامانه‌های کانژوگه مورد بررسی قرار گرفت. فرآیند حرارتی سبب کاهش معنی‌دار pH سامانه‌های کیتوزان- ساکارید گردید. بالاترین شدت ترکیبات حد واسط (A 294nm) و کمترین شدت قهوه‌ای شدن (A 420nm) در سامانه کیتوزان- فروکتوز مشاهده شد؛ در حالیکه کانژوگه‏ کیتوزان- اینولین بیشترین A 420nm و کمترین نسبت تبدیل محصولات میانی به نهایی (A 294nm/A 420nm) را نشان داد. اتصال کووالانی کیتوزان به ساکاریدهای اینولین، فروکتوز و گلوکز با استفاده از طیف‌سنج فروسرخ تبدیل فوریه (FTIR) تأیید گردید. واکنش مایلارد منجر به تشکیل محصولاتی با فعالیت آنتی‌اکسیدانی قابل‌توجه شد و به استثنای سامانه کیتوزان- گلوکز، سایر نمونه‌های کانژوگه حداقل غلظت مهارکنندگی و کشندگی کمتری نسبت به نمونه‌های غیرکانژوگه نشان دادند که بیانگر بهبود فعالیت ضدمیکروبی کیتوزان بعد از واکنش با اینولین و فروکتوز می‌باشد. مطابق نتایج، کانژوگه‌های مایلارد، به‌ویژه اینولین- کیتوزان می‌تواند نوع جدیدی از ترکیبات زیست‌فعال بر پایه‌ی پری‏بیوتیک با ویژگی‌های آنتی‌اکسیدانی و ضدمیکروبی جهت استفاده در صنایع غذایی باشد.

کلیدواژه‌ها

Akagawa, M., Sasaki, T., & Suyama, K., 2002, Oxidative deamination of lysine residue in plasma protein of diabetic rats. The FEBS Journal, 269(22), 5451-5458.
 
Behbahani, B. A., Shahidi, F., Yazdi, F. T., Mortazavi, S. A., & Mohebbi, M., 2017, Antioxidant activity and antimicrobial effect of tarragon (Artemisia dracunculus) extract and chemical composition of its essential oil. Journal of Food Measurement and Characterization, 11(2), 847-863.
 
Benjakul, S., Lertittikul, W., & Bauer, F., 2005, Antioxidant activity of Maillard reaction products from a porcine plasma protein–sugar model system. Food Chemistry, 93(2), 189-196.
 
Beverlya, R. L., Janes, M. E., Prinyawiwatkula, W., & No, H. K., 2008, Edible chitosan films on ready-to-eat roast beef for the control of Listeria monocytogenes. Food Microbiology, 25(3), 534-537.
 
Chang, H. L., Chen, Y. C., & Tan, F. J., 2011, Antioxidative properties of a chitosan–glucose Maillard reaction product and its effect on pork qualities during refrigerated storage. Food chemistry, 124(2), 589-595.
 
de Oliveira, F. C., Coimbra, J. S. D. R., de Oliveira, E. B., Zuñiga, A. D. G., & Rojas, E. E. G., 2016, Food protein-polysaccharide conjugates obtained via the maillard reaction: A review. Critical Reviews in Food Science and Nutrition, 56(7), 1108-1125.
 
Devlieghere, F., Vermeulen, A., & Debevere, J., 2004, Chitosan: antimicrobial activity, interactions with food components and applicability as a coating on fruit and vegetables. Food microbiology, 21(6), 703-714.
 
Gullon, B., Montenegro, M. I., Ruiz-Matute, A. I., Cardelle-Cobas, A., Corzo, N., & Pintado, M. E., 2016, Synthesis, optimization and structural characterization of a chitosan–glucose derivative obtained by the Maillard reaction. Carbohydrate polymers, 137, 382-389.
He, Y., 2015, Improved heat stability of whey protein isolate by glycation with inulin. University of Missouri-Columbia.
 
Jiang, Z., Rai, D. K., O'Connor, P. M., & Brodkorb, A., 2013, Heat-induced Maillard reaction of the tripeptide IPP and ribose: Structural characterization and implication on bioactivity. Food research international, 50(1), 266-274.
 
Jing, H., Yap, M., Wong, P. Y., & Kitts, D. D., 2011, Comparison of physicochemical and antioxidant properties of egg-white proteins and fructose and inulin Maillard reaction products. Food and Bioprocess Technology, 4(8), 1489-1496.
 
Kalyani Nair, K., Kharb, S., & Thompkinson, D. K., 2010, Inulin dietary fiber with functional and health attributes—a review. Food Reviews International, 26(2), 189-203.
 
Karimi, R., Azizi, M. H., Ghasemlou, M., & Vaziri, M., 2015, Application of inulin in cheese as prebiotic, fat replacer and texturizer: A review. Carbohydrate Polymers, 119, 85-100.
 
Kim, J. S., & Lee, Y. S., 2009, Study of Maillard reaction products derived from aqueous model systems with different peptide chain lengths. Food Chemistry, 116(4), 846-853.
 
Kumar, M. N. R., 2000, A review of chitin and chitosan applications. Reactive and functional polymers, 46(1), 1-27.
 
Labuza, T. P., Monnier, V., Baynes, J., & O'Brien, J. (Eds.)., 1998, Maillard reactions in chemistry, food and health. Elsevier.
 
Li, X., Shi, X., Jin, Y., Ding, F., & Du, Y., 2013, Controllable antioxidative xylan–chitosan Maillard reaction products used for lipid food storage. Carbohydrate polymers, 91(1), 428-433.
 
Lingnert, H., & Eriksson, C. E., 1980, Antioxidative Maillard reaction products. II.
Products from sugars and peptides or protein hydrolysates. Journal of Food Processing
and Preservation, 4(3), 173-181.
 
Liu, S. C., Yang, D. J., Jin, S. Y., Hsu, C. H., & Chen, S. L., 2008, Kinetics of color development, pH decreasing, and anti-oxidative activity reduction of Maillard reaction in galactose/glycine model systems. Food Chemistry, 108(2), 533-541.
 
Lopes, S. M., Krausova, G., Rada, V., Gonçalves, J. E., Gonçalves, R. A., & de Oliveira, A. J., 2015, Isolation and characterization of inulin with a high degree of polymerization from roots of Stevia rebaudiana (Bert.) Bertoni. Carbohydrate research, 411, 15-21.
 
Martins, S. I., Jongen, W. M., & Van Boekel, M. A., 2000, A review of Maillard reaction in food and implications to kinetic modelling. Trends in Food Science & Technology, 11(9), 364-373.
 
Mcdevitt-Pugh, M., & Meyer, D., 2005, Low glycemic index products with inulin to support weight management. Wellness Foods Europe, 34, 20-24.
 
Muppalla, S. R., Sonavale, R., Chawla, S. P., & Sharma, A., 2012, Functional properties of nisin–carbohydrate conjugates formed by radiation induced Maillard reaction. Radiation Physics and Chemistry, 81(12), 1917-1922.
 
Mutanda, T., Mokoena, M. P., Olaniran, A. O., Wilhelmi, B. S., & Whiteley, C. G., 2014, Microbial enzymatic production and applications of short-chain fructooligosaccharides and inulooligosaccharides: recent advances and current perspectives. Journal of industrial microbiology & biotechnology, 41(6), 893-906.
 
Nooshkam, M., & Madadlou, A., 2016a, Maillard conjugation of lactulose with potentially bioactive peptides. Food Chemistry, 192, 831-836.
 
Nooshkam, M., & Madadlou, A., 2016b, Microwave-assisted isomerisation of lactose to lactulose and Maillard conjugation of lactulose and lactose with whey proteins and peptides. Food chemistry, 200, 1-9.
 
Nursten, H. E., 2005, The Maillard reaction: chemistry, biochemistry, and implications.
Royal Society of Chemistry.
 
O'Brien, J., Morrissey, P. A., & Ames, J. M., 1989, Nutritional and toxicological aspects of the Maillard browning reaction in foods. Critical Reviews in Food Science & Nutrition, 28(3), 211-248.
 
Phisut, N., & Jiraporn, B., 2013, Characteristics and antioxidant activity of Maillard reaction products derived from chitosan-sugar solution. International Food Research Journal, 20(3).
 
Prashanth, K. H., & Tharanathan, R. N., 2007, Chitin/chitosan: modifications and their unlimited application potential—an overview. Trends in food science & technology, 18(3), 117-131.
 
Rufian-Henares, J. A., & de la Cueva, S. P., 2009, Antimicrobial Activity of Coffee Melanoidins A Study of Their Metal-Chelating Properties. Journal of Agricultural and Food Chemistry, 57(2), 432-438.
 
Rufian-Henares, J. A., & Morales, F. J., 2006, A new application of a commercial microtiter plate-based assay for assessing the antimicrobial activity of Maillard reaction products. Food Research International, 39(1), 33-39.
 
Rufian-Henares, J. A., & Morales, F. J., 2008a, Microtiter plate-based assay for screening antimicrobial activity of melanoidins against E. coli and S. aureus. Food chemistry, 111(4), 1069-1074.
 
Rufian-Henares, J. A., & Morales, F. J., 2008b, Antimicrobial activity of melanoidins against Escherichia coli is mediated by a membrane-damage mechanism. Journal of Agricultural and Food Chemistry, 56(7), 2357-2362.
 
Schaller‐Povolny, L. A., & Smith, D. E., 1999, Sensory attributes and storage life of reduced fat ice cream as related to inulin content. Journal of Food Science, 64(3), 555-559.
 
Shahidi, F., 2000, Antioxidants in food and food antioxidants. Food/nahrung, 44(3), 158-163.
Vhangani, L. N., & Van Wyk, J., 2013, Antioxidant activity of Maillard reaction products
(MRPs) derived from fructose–lysine and ribose–lysine model systems. Food Chemistry, 137(1), 92-98.
 
Wang, H. Y., Qian, H., & Yao, W. R., 2011, Melanoidins produced by the Maillard reaction: Structure and biological activity. Food Chemistry, 128(3), 573-584.
 
Wang, W. Q., Bao, Y. H., & Chen, Y., 2013, Characteristics and antioxidant activity of water-soluble Maillard reaction products from interactions in a whey protein isolate and sugars system. Food Chemistry, 139(1), 355-361.
 
Wu, S., Hu, J., Wei, L., Du, Y., Shi, X., & Zhang, L., 2014, Antioxidant and antimicrobial
activity of Maillard reaction products from xylan with
chitosan/chitooligomer/glucosamine hydrochloride/taurine model systems. Food Chemistry, 148, 196-203.
 
Yu, M., He, S., Tang, M., Zhang, Z., Zhu, Y., & Sun, H., 2018, Antioxidant activity and
sensory characteristics of Maillard reaction products derived from different peptide
fractions of soybean meal hydrolysate. Food Chemistry, 243, 249-257.
 
Yuan, D., Xu, Y., Wang, C., Li, Y., Li, F., Zhou, Y., ... & Jiang, Y., 2015, Comparison of anti-browning ability and characteristics of the fractionated Maillard reaction products with different polarities. Journal of Food Science and Technology, 52(11), 7163-7172.
 
Zhang, H., Yang, J., & Zhao, Y., 2015, High intensity ultrasound assisted heating to improve solubility, antioxidant and antibacterial properties of chitosan-fructose Maillard reaction products. LWT-Food Science and Technology, 60(1), 253-262.
 
Zhong, N. J., Liu, G. Q., Zhao, X. H., Gao, Y. Q., Li, L., & Li, B., 2015, Lipid Peroxidation Inhibitation Activity of Maillard Reaction Products Derived from Sugar-amino Acid Model Systems. Advance Journal of Food Science and Technology, 9(5), 393-397.
CAPTCHA Image