نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم باغبانی، دانشکدۀ کشاورزی، دانشگاه لرستان، خرم آباد، ایران

2 گروه بیوسیستم، دانشکدۀ کشاورزی، دانشگاه لرستان، خرم آباد، ایران

3 گروه علوم باغبانی، دانشکدۀ کشاورزی، دانشگاه بین المللی امام خمینی (ره)، قزوین، ایران

چکیده

بالا رفتن سطح آگاهی مردم نسبت به اثرات منفی نگهدارنده­های شیمیایی، منجر به انجام تحقیقات بیش­تر در زمینه پوشش­های­طبیعی،زیست­تخریب­پذیر با خاصیت ضدمیکروبی شده است. این پژوهش، به­صورت آزمایش فاکتوریل، در قالب طرح کامل تصادفی با چهار تکرار در گلخانه آموزشی تحقیقاتی دانشکده کشاورزی دانشگاه لرستان انجام شد. فاکتور اول، نوع مواد با غلظت­های مختلف در پنج سطح شامل صفر (شاهد)، کارواکرول ۳/۰ درصد، کارواکرول ۶/۰ درصد، ترکیب کیتوزان ۵/۱ درصد با کارواکرول ۳/۰ درصد و ترکیب کیتوزان ۵/۱ درصد با کارواکرول ۶/۰ درصد و فاکتور دوم زمان انبارمانی در چهار سطح شامل صفر، ۱۰، ۲۰، ۳۰ روز پس از انبارمانی بود. میوه­های برداشت شده در دمای 5/0±4 درجه سانتی­گراد، با رطوبت نسبی ۵±۹۰ درصد نگهداری شدند. نتایج تجزیه واریانس داده­ها نشان داد که تاثیر نوع تیمار و مدت زمان انبارمانی بر تمام صفات مورد بررسی به­جز سفتی بافت میوه در سطح احتمال یک درصد معنی­دار بود. میوه­های تیمار شده با ترکیب کیتوزان و کارواکرول ۶/۰ درصد سفتی بافت، ویتامین­ث، مواد فنولی و مقدار مواد جامد محلول بیش­تر و ماندگاری بهتری نسبت به شاهد داشتند. به­طوری‌که بالاترین میزان محتوای فنل کل (۴۹/۲ میلی­گرم اسیدگالیک در ۱۰۰ گرم وزن تر) و سفتی بافت (۸۰/۳ کیلوگرم نیرو) مربوط به تیمار ترکیبی کیتوزان با کارواکرول ۶/۰ درصد بود. نتایج این مطالعه نشان داد کاربرد قبل از برداشت کیتوزان و کارواکرول ۶/۰ درصد می­تواند به­عنوان یک راهبرد ایمن و کم هزینه جهت افزایش عمر پس از برداشت توت­فرنگی رقم ’پاروس‘ قابل توصیه باشد.

کلیدواژه‌ها

موضوعات

©2023 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source.

  1. Abd-Elkader, D.Y., Salem, M.Z.M., Komeil, D.A., Al-Huqail, A.A., Ali, H.M., Salah, A.H., Akrami, M., & Hassan, H.S. (2021). Post-harvest enhancing and Botrytis cinerea control of strawberry fruits using low cost and eco-friendly natural oils. Agronomy, 11, 1246. https://doi.org/10.3390/agronomy11061246
  2. Abu Salha, B., & Gedanken, A. (2021). Extending the shelf life of strawberries by the sonochemical coating of their surface with nanoparticles of an edible anti-bacterial compound. Applied Nano, 2, 14–24. https://doi.org/10.3390/applnano2010002
  3. Agriopoulou, S., Stamatelopoulou, E., Sachadyn-Król, M., & Varzakas, T. (2020). Lactic acid bacteria as antibacterial agents to extend the shelf life of fresh and minimally processed fruits and vegetables: quality and safety aspects. Microorganisms, 8, 952. https://doi.org/10.3390/microorganisms8060952
  4. Ahn,G., Kim, D.S., Ahn, S.R., Sim, H.S., Kim, S., & Kim, S.K. (2021). Characteristics and trends of strawberry cultivars throughout the cultivation season in a Greenhouse. Horticulturae, 7, 30. https://doi.org/10.3390/horticulturae7020030
  5. Ali, A., Tengku, M., Muda, M., Sijam, K., & Siddiqu, Y. (2011). Effect of chitosan coatings on the physicochemical characteristics of Eksotika II papaya (Carica papaya) fruit during cold storage. Food Chemistry, 124, 620-626. https://doi.org/10.1016/j.foodchem.2010.06.085
  6. Alirezalu, K., Tavakolian, R., & Jaffarpour, P. (2018). Effect of postharvest application of chitosan coating containing green tea extract on quality characteristics and shelf life of Selva strawberry cultivar. Research in Pomology, 3(1), 43-56.
  7. Bautista-Banos, S., Hernandez-Lopez, M., Bosquez-Molina, E., & Wilson, C.L. )2003(. Effects of chitosan and plant extractes on growth of Colletotrichum gloeosporioides, anthracnose levels and quality of papaya fruit. Crop Protection, 22, 1087-1092. https://doi.org/10.1016/S0261-2194(03)00117-0
  8. Bursac Kovacevic, D., Putnik, P., Uzelac Verica, D., & Livaj, B. )2015.( Influences of organically and conventionally grown strawberry cultivars on anthocyanins content and color in purees and low-sugar jams. Food Chemistry, 181, 94–100. https://doi.org/10.1016/j.foodchem.2015.02.063
  9. Chiabrando, V., Garavaglia, L., & Giacalone, G. (2019). The postharvest quality of fresh sweet cherries and strawberries with an active packaging system. Foods, 8, 335. https://doi.org/10.3390/foods8080335
  10. Chien, P.J., Sheu, F., & Yang, F.H. )2007(. Effect of edible chitosan coating on quality and shelf life of sliced mango fruit. Food Engineering, 78, 225-229. https://doi.org/10.1016/j.jfoodeng.2005.09.022
  11. De Corato, U. (2020). Improving the shelf-life and quality of fresh and minimally-processed fruits and vegetables for a modern food industry: A comprehensive critical review from the traditional technologies into the most promising advancements. Critical Reviews in Food Science and Nutrition, 60, 940–975. https://doi.org/10.1080/10408398.2018.1553025
  12. Ding, J., Zhang, R., Ahmed, S., Liu, Y., & Qin, W. (2019). Effect of sonication duration in the performance of polyvinyl alcohol/chitosan bilayer films and their effect on strawberry preservation. Molecules, 24(7), 1408-1414. https://doi.org/10.3390/molecules24071408
  13. Dong, H., Cheng, L., Tan, J., Zheng, K., & Jiang, Y. )2004(. Effects of chitosan coating on quality and shelf life of peeled litchi fruit. Food Engineering, 64, 355-358. https://doi.org/10.1016/j.jfoodeng.2003.11.003
  14. Duan, J., Wu, R., Strik, B.C., & Zhao, Y. )2011(. Effect of edible coatings on the quality of fresh blueberries (Duke and Elliott) under commercial storage conditions. Postharvest Biology and Technology, 59, 71–79. https://doi.org/10.1016/j.postharvbio.2010.08.006
  15. Ergun, M., & Satici, F. )2012( Use of Aloe vera gel as biopreservative for ‘Granny Smith’ and‘Red Chief’Journal of Animal and Plant Sciences, 22(2), 363.
  16. Etemadipoor, R., Ramezanian, A., Dastjerdi, A.M., & Shamili, M. (2019). The potential of gum arabic enriched with cinnamon essential oil for improving the qualitative characteristics and storability of guava Psidium guajava fruit. Scientia Horticulturae, 251, 101-107. https://doi.org/10.1016/j.scienta.2019.03.021
  17. Eum, H.-L., Han, S.-H., & Lee, E.-J. (2021). High-CO2 treatment prolongs the postharvest shelf life of strawberry fruits by reducing decay and cell wall degradation. Foods, 10, https://doi.org/10.3390/foods10071649
  18. Farina, V., Passafiume, R., Tinebra, I., Palazzolo, E., & Sortino, G. (2020). Use of Aloe vera gel-based edible coating with natural anti-browning and anti-oxidant additives to improve post-harvest quality of fresh-cut ‘Fuji’ apple. Agronomy, 10, 515. https://doi.org/10.3390/agronomy10040515
  19. Fernández-Pan, I., Maté, J. I., Gardrat, C., & Coma, (2015). Effect of chitosan molecular weight on the antimicrobial activity and release rate of carvacrol-enriched films. Food Hydrocolloids51, 60-68. https://doi.org/10.1016/j.foodhyd.2015.04.033
  20. Feyzollahi, Y., Golmohammadi, A., Nematollahzadeh, A., & Tahmasebi, M. (2022). Evaluation the effect of biodegradable active packaging based on Zein containing Zataria multiflora essential oil on postharvest shelf life of strawberry. Innovative Food Technologies9(2), 113-127. https://doi.org/10.22104/jift.2021.5248.2071
  21. Friedman, M. (2014). Chemistry and multibeneficial bioactivities of carvacrol (4-isopropyl-2-methylphenol), a component of essential oils produced by aromatic plants and spices. Journal of Agricultural and Food Chemistry62(31), 7652-7670.‏ https://doi.org/10.1021/jf5023862
  22. Ghasemnezhad, M., Shiri, M.A., & Sanavi, M. (2010). Effect of chitosan coatings on some quality indices of apricot (Prunus armeniaca L.) during cold storage. Journal of Enviromental Sciences, 8, 25-33. https://cjes.guilan.ac.ir/data/cjes/coversheet/head_en.jpg
  23. Ghoora, M.D., & Srividya, N. (2020). Effect of packaging and coating technique on postharvest quality and shelf life of Raphanus sativus and Hibiscus sabdariffa L. Microgreens Foods, 9, 653. https://doi.org/10.3390/foods9050653
  24. Hashmi, M.S., East, A.R., Palmer, J.S., & Heyes, J.A. (2013). Hypobaric treatment stimulates defence-related enzymes in strawberry. Postharvest Biology Technology, 85, 77– https://doi.org/10.1016/j.postharvbio.2013.05.002
  25. He, Y., Bose, S.K., Wang, W., Jia, X., Lu, H., & Yin, H. (2018). Pre-harvest treatment of chitosan oligosaccharides improved strawberry fruit quality. International Journal of Molecular Sciences19(8), 2194.‏ https://doi.org/10.3390/ijms19082194
  26. Hosseini, S.F., Amraie, M., Salehi, M., Mohseni, M., & Aloui, H. 2019. Effect of chitosan-based coatings enriched with savory and/or tarragon essential oils on postharvest maintenance of kumquat (Fortunella) fruit. Food Science and Technology International, 7, 155–162. https://doi.org/10.1002/fsn3.835
  27. Ilari, A., Toscano, G., Boakye-Yiadom, K.A., & Duca, D. (2021); Foppa pedretti, E. life cycle assessment of protected strawberry productions in central Italy. Sustainability, 13, 4879. https://doi.org/10.3390/su13094879
  28. Jalili Marandi, R. (2013). Physiology after harvesting. Academic Jihad Publications of Urmia University. 276 p. https://doi.org/10.3390/su142214918
  29. Kahramano˘ glu, ˙I. (2019). Effects of lemongrass oil application and modified atmosphere packaging on the postharvest life and quality of strawberry fruits. Science Horticulture, 256, https://doi.org/10.1016/j.scienta.2019.05.054
  30. Khodaei, D., Hamidi-Esfahani, Z., & Rahmati, E. (2021). Effect of edible coatings on the shelf-life of fresh strawberries: A comparative study using TOPSIS-Shannon entropy method. NFS Journal, 23, 17–23. https://doi.org/10.1016/j.nfs.2021.02.003
  31. Leja, M., Mareczek, A., & Ben, J. )2008(. Antioxidant properties of two apple cultivars during long-term storage. The Journal of Food Composition and Analysis, 21, 396-401. https://doi.org/10.1016/S0308-8146(02)00263-7
  32. Liu, J., Tian, S., Menga, X., & Xua, Y. )2007(. Effects of chitosan on control of postharvest diseases and physiological responses of tomato fruit. Postharvest Biology and Technology, 44, 300–306. https://doi.org/10.1016/j.postharvbio.2006.12.019
  33. Mac Lean, D.D., Murr, D.P., & DeELL, J.R.A. )2000(. Modified total oxyradical scavenging capacity assay for antioxidants in plant tissues. Postharvest Biology and Technology, 29, 183-194. https://doi.org/10.1016/S0925-5214(02)00248-X
  34. Meighani, H., Ghasemnezhad, M., & Bakhshi, D. (2015). Effect of different coatings on post-harvest quality and bioactive compounds of pomegranate (Putnica granatum ) fruits. Journal of Food Science and Technology, 52(7), 4507–4514. https://doi.org/10.1007/s13197-014-1484-6
  35. Montero-Prado, P., Rodriguez-Lafuente, A., & Nerin, C. (2011). Active label-based packaging to extend the shelf-life of “Calanda” peach fruit: Changes in fruit quality and enzymatic activity. Postharvest Biology and Technology, 60, 211-219. https://doi.org/10.1016/j.postharvbio.2011.01.008
  36. Moraes, K.S., de Fagundes, C., Melo, M.C., Andreani, P., & Monteiro, A.R. )2012(. Con-servation of Williams pear using edible coating with alginate and carrageenan. Ciencia e Tecnologia de Alimentos, 32, 679–684. http://dx.doi.org/10.1016/S0963-9969(00)00093-4
  37. Mozafari, A.A., Dedejani, S., & Ghaderi, N. (2018). Positive responses of strawberry (Fragaria_ananassa) explants to salicylic and iron nanoparticle application under salinity conditions. Plant Cell Tissue Organ Culture, 134, 267–275. https://doi.org/10.1007/s11240-018-1420-y
  38. Nair, M.S., Tomar, M., Punia, S., Kukula-Koch, W., & Kumar, M. (2020) Enhancing the functionality of chitosan- and alginate-based active edible coatings/films for the preservation of fruits and vegetables: A review. International Journal of Biological Macromolecules, https://doi.org/10.1016/j.ijbiomac.2020.07.083
  39. Nemzer, B., Vargas, L., Xia, X., & Feng, H. (2018). Phytochemical and physical properties of blueberries, tart cherries, strawberries, and cranberries as affected by different drying methods. Food Chemistry, 262, 242-250. https://doi.org/10.1016/j.foodchem.2018.04.047
  40. Nia, A.E., Taghipour, S., & Siahmansour, S. (2021). Pre-harvest application of chitosan and postharvest Aloe vera gel coating enhances quality of table grape (Vitis vinifera cv.‘Yaghouti’) during postharvest period. Food Chemistry347, 129012.‏ https://doi.org/10.1016/j.foodchem.2021.129012
  41. Peretto, G., Du, W.X., Avena-Bustillos, R.J., Sarreal, S.B.L., Hua, S.S.T., Sambo, P., & McHugh, T.H. (2014). Increasing strawberry shelf-life with carvacrol and methyl cinnamate antimicrobial vapors released from edible films. Postharvest Biology and Technology89, 11-18.‏ https://doi.org/10.1016/j.postharvbio.2013.11.003
  42. Romanazzi, G., Feliziani, E., Sivakumar, D., & Chitosan, A. (2018). Biopolymer with triple action on postharvest decay of fruit and vegetables: eliciting, antimicrobial and film-forming Front. Microbiology, 9, 2745. https://doi.org/10.3389/fmicb.2018.02745
  43. Rostamzadeh, B., Ramin, A.A., Amini, F., & Pirmoradian, M. (2015). Effect of chitosan coating on increasing postharvest life and maintaining apple fruit quality Cv “Soltani”. JCPP, 5(17), 263-272.
  44. Saki, M., ValizadehKaji, B., Abbasifar, A., & Shahrjerdi, I. (2019). Effect of chitosan coating combined with thymol essential oil on physicochemical and qualitative properties of fresh fig (Ficus carica) fruit during cold storage. Journal of Food Measurement and Characterization, 13(2), 1147-1158. https://doi.org/10.1007/s11694-019-00030-w
  45. Shin, Y., Liu, R.H., Nock, J., Holliday, D., & Watkins, C.B. (2007). Temperature and relative humidity effects on quality, total ascorbic acid, phenolics and flavonoid concentrations, and antioxidant activity of strawberry. Postharvest Biology and Technology, 45, 349–357. https://doi.org/10.1016/j.postharvbio.2007.03.007
  46. Shirzad, H. (2013). Effect of chitosan and calcium chloride to reduce postharvest rot and different quality attributes on Siah mashhad sweetcherry. Journal of Horticultural Science, 26(4), 378-384. https://doi.org/10.22067/jhorts4.v0i0.18224
  47. Srinivasa, P.C., Baskaran, R., Armes, M.N., Harish Prashanth, K.V., & Tharanathan, R.N. (2002). Storage studies of mango packed using biodegradable chitosan. Food Research and Technology, 215, 504–508. https://doi.org/10.1007/s00217-002-0591-1
  48. Tanada-Palmu, P., & Grosso, C. (2005). Effect of edible wheat gluten-based films an coatings on refrigerated strawberry (Fragaria ananassa) quality. Postharvest Biology and Technology, 36, 199–208. https://doi.org/10.1016/j.postharvbio.2004.12.003
  49. Tzortzakis, N., Xylia, P., & Chrysargyris, A. (2019). Sage essential oil improves the effectiveness of Aloe vera gel on postharvest quality of tomato fruit. Agronomy, 9, 635. https://doi.org/10.3390/agronomy9100635
  50. Yuan, G., Chen, X., & Li, D. (2016). Chitosan films and coatings containing essential oils: The antioxidant and antimicrobial activity, and application in food systems. Food Research International, 89, 117–128. https://doi.org/10.1016/j.foodres.2016.10.004
  51. Ziv, C., & Fallik, E. (2021). Postharvest storage techniques and quality evaluation of fruits and vegetables for reducing food loss. Agronomy, 11, 1133. https://doi.org/10.3390/agronomy11061133
  52. Zivanovic, S., Shuang, C., & Draughon, A.F. (2005). Antimicrobial activity of chitosan films enriched with essential oils. Food Science, 70, 45-51.https://doi.org/10.1111/j.1365-2621.2005.tb09045.x

 

CAPTCHA Image