نوع مقاله : مقاله پژوهشی فارسی

نویسندگان

گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

چکیده

در این پژوهش، اثر سطوح جایگزینی صمغ دانه شاهی (0، 5، 10 و 15%) و ساکارز (0، 5 و 10%) بر خصوصیات عملکردی (قدرت تورم و حلالیت) سوسپانسیون نشاسته و همچنین ساختمان، کنتیک بیاتی و آب‌اندازی ژل نشاسته گندم پس از نگهداری به مدت صفر، 1، 7 و 14 روز در دمای oC 4 مورد مطالعه قرار گرفتند. قدرت تورم نشاسته گندم با افزایش غلظت جایگزینی صمغ و قند به ترتیب افزایش و کاهش یافت. نمونه‌های مخلوط سه جزئی نشاسته-صمغ-قند دارای قدرت تورم بالاتری در مقایسه با نمونه نشاسته و مخلوط نشاسته-قند داشتند. میزان حلالیت نشاسته با افزایش غلظت صمغ و قند افزایش یافت و نمونه‌های مخلوط دارای مقادیر حلالیت بالاتری نسبت به هر یک به صورت مجزا بودند. تصاویر میکروسکوپی نشان دادند که حضور صمغ منجر به ایجاد ساختمان متراکم‌تر با اندازه حفرات کوچک‌تر ژل نشاسته شد، در‌حالی ‌که حضور قند ساختمانی گسسته‌تر با اندازه حفرات بزرگ‌تری را ایجاد کرد. پس از نگهداری نمونه‌های ژل به مدت 14 روز در دمای oC 4 مشاهده شد که افزودن صمغ تأثیر بسزایی در کاهش سرعت بیات ‌شدن و میزان آب‌اندازی نشاسته به ترتیب از (s-1) 101/0 به 52/0 و از 50% به 23% داشت. قند نیز منجر به کاهش سرعت بیات ‌شدن ژل نشاسته تا (s-1) 096/0 شد، اما میزان آب‌اندازی آن را تا 57% افزایش داد. نمونه‌های ژل مخلوط به خصوص در غلظت 15% جایگزینی صمغ دارای سرعت بیات‌شدن (s-1) 057/0 و میزان آب‌اندازی 45% بودند.

کلیدواژه‌ها

موضوعات

  1. Abedi, E., Pourmohammadi, K., Jahromi, M., Niakousari, M., & Torri, L. (2019). The effect of ultrasonic probe size for effective ultrasound-assisted pregelatinized starch. Food and Bioprocess Technology 12(11): 1852-1862. https://doi.org/10.1007/s11947-019-02347-2.
  2. Bahnassey, Y.A., & Breene, W.M. (1994). Rapid Visco-Analyzer (RVA) pasting profiles of wheat, corn, waxy corn, Tapioca and Amaranth Starches (A. hypochondriacus and A cruentus) in the presence of Konjac flour, gellan, guar, xanthan and Locust bean gums. Starch - Stärke 46(4): 134-141. https://doi.org/10.1002/star.19940460404.
  3. Behrouzian, F., Razavi, S.M.A., & Karazhiyan, H. (2014). Intrinsic viscosity of cress (Lepidium sativum) seed gum: Effect of salts and sugars. Food Hydrocolloids 35: 100-105. https://doi.org/10.1016/j.foodhyd.2013.04.019.
  4. BeMiller, J.N. (2011). Pasting, paste, and gel properties of starch–hydrocolloid combinations. Carbohydrate Polymers 86(2): 386-423.‏ https://doi.org/10.1016/j.carbpol.2011.05.064.
  5. Berski, W., Ziobro, R., Witczak, M., & Gambu´s, H. (2018). The retrogradation kinetics of starches of different botanical origin in the presence of glucose syrup. International Journal of Biological Macromolecules 114: 1288-1294. https://doi.org/10.1016/j.ijbiomac.2018.04.019.
  6. Brennan, C.S., Suter, M., Matia‐Merino, L., Luethi, T., Ravindran, G., Goh, K., & Ovortrup, J. (2006). Gel and pasting behaviour of fenugreek‐wheat starch and fenugreek – wheat flour combinations. Starch Stärke 58(10): 527-535. https://doi.org/10.1002/star.200600525.
  7. Biliaderis, C.G. (2009). Structural transitions and related physical properties of starch. Third Edition ed. in: Starch: Chemistry and Technology (Eds.) J. BeMiller, R. Whistler, Academic Press. San Diego. https://doi.org/10.1016/B978-0-12-746275-2.00008-2.
  8. Biliaderis, C.G., Arvanitoyannis, I., Izydorczyk, M.S., & Prokopowich, D.J. (1997). Effect of hydrocolloids on gelatinization and structure formation in concentrated waxy maize and wheat starch gels. Starch - Stärke 49(7-8): 278-283. https://doi.org/10.1002/star.19970490706.
  9. Cairns, P., I’Anson, K.J., & Morris, V.J. (1991). The effect of added sugars on the retrogradation of wheat starch gels by X-ray diffraction. Food Hydrocolloids 5(1): 151-153. https://doi.org/10.1016/S0268-005X(09)80302-0.
  10. Chaisawang, M., & Suphantharika, M. (2006). Pasting and rheological properties of native and anionic tapioca starches as modified by guar gum and xanthan gum. Food Hydrocolloids 20(5): 641-649. https://doi.org/10.1016/j.foodhyd.2005.06.003.
  11. Chen, H.H., Wang, Y.S., Leng, Y., Zhao, Y., & Zhao, X. (2014). Effect of NaCl and sugar on physicochemical properties of flaxseed polysaccharide-potato starch complexes. Science Asia 40(1): 60-68. http://doi.org/10.2306/scienceasia1513-1874.2014.40.060.
  12. Christianson, D.D., Hodge, J.E., Osborne, D., & Detroy, R.W. (1981). Gelatinization of wheat starch as modified by xanthan gum, guar gum, and cellulose gum. Cereal Chemistry 58(6): 513-517.
  13. Dengate, H.N. (1984). Swelling, pasting, and gelling of wheat starch. in: Advances in Cereal Science and Technology, (Ed.) Y. Pomeranz, Vol. VI, American Association of Cereal Chemists, INC. St. Paul, Minnesota, pp. 49-82.
  14. Dos Santos, T.P.R., Franco, C.M.L., do Carmo, E.L., Jane, J.L., & Leonel, M. (2019). Effect of spray-drying and extrusion on physicochemical characteristics of sweet potato starch. Journal of Food Science and Technology 56(1): 376-383. https://doi.org/10.1007/s13197-018-3498-y.
  15. Food and Agriculture Organization of the United Nations, Homepage of FAO. http://www.fao.org/faostat/en/#data/QC, 2020(last update: 22 December 2020)
  16. Funami, T., Kataoka, Y., Omoto, T., Goto, Y., Asai, I., & Nishinari, K. (2005). Effects of non-ionic polysaccharides on the gelatinization and retrogradation behavior of wheat starch. Food Hydrocolloids 19(1): 1-13. https://doi.org/10.1016/j.foodhyd.2004.04.024.
  17. Funami, T., Nakauma, M., Noda, S., Ishihara, S., Asai, I., Inouchi, N., & Nishinari, K. (2008). Effects of some anionic polysaccharides on the gelatinization and retrogradation behaviors of wheat starch: Soybean-soluble polysaccharide and gum arabic. Food Hydrocolloids 22(8): 1528-1540. https://doi.org/10.1016/j.foodhyd.2007.10.008.
  18. Gunaratne, A., Ranaweera, S., & Corke, H. (2007). Thermal, pasting, and gelling properties of wheat and potato starches in the presence of sucrose, glucose, glycerol, and hydroxypropyl β-cyclodextrin. Carbohydrate Polymers 70(1): 112-122. https://doi.org/10.1016/j.carbpol.2007.03.011.
  19. Karazhiyan, H., Razavi, S.M.A., & Phillips, G.O. (2011a). Extraction optimization of a hydrocolloid extract from cress seed (Lepidium sativum) using response surface methodology. Food Hydrocolloids 25(5): 915-920. https://doi.org/10.1016/j.foodhyd.2010.08.022.
  20. Karazhiyan, H., Razavi, S.M.A., Phillips, G.O., Fang, Y., Al-Assaf, S., & Nishinari, K. (2011b). Physicochemical aspects of hydrocolloid extract from the seeds of Lepidium sativum. International Journal of Food Science & Technology 46(5): 1066-1072. https://doi.org/10.1111/j.1365-2621.2011.02583.x.
  21. Kaur, L., Singh, J., Singh, H., & McCarthy, O.J. (2008). Starch–cassia gum interactions: A microstructure–Rheology study. Food Chemistry 111(1): 1-10. https://doi.org/10.1016/j.foodchem.2008.03.027.
  22. Kontogiorgos, V. (2015). Galactomannans (Guar, Locust Bean, Fenugreek, Tara). https://doi.org/10.1016/B978-0-08-100596-5.21589-8.
  23. Kumar, R., & Khatkar, B.S. (2017). Thermal, pasting and morphological properties of starch granules of wheat (Triticum aestivum) varieties. Journal of Food Science and Technology 54(8): 2403-2410. https://doi.org/10.1007/s13197-017-2681-x.
  24. Lee, M.H., Baek, M.H., Cha, D.S., Park, H.J., & Lim, S.T. (2002). Freeze–thaw stabilization of sweet potato starch gel by polysaccharide gums. Food Hydrocolloids 16(4): 345-352. https://doi.org/10.1016/S0268-005X(01)00107-2.
  25. Lo, C., & Ramsden, L. (2000). Effects of xanthan and galactomannan on the freeze/thaw properties of starch gels. Food/Nahrung 44(3): 211-214. https://doi.org/10.1002/1521-3803(20000501)44:3<211::AID-FOOD211>3.0.CO;2-O.
  26. Lutfi, Z., Nawab, A., Alam, F., Hasnain, A., & Haider, S.Z. (2017). Influence of xanthan, guar, CMC and gum acacia on functional properties of water chestnut (Trapa bispinosa) starch. International Journal of Biological Macromolecules 103: 220-225. https://doi.org/10.1016/j.ijbiomac.2017.05.046.
  27. Mandala, I.G., & Bayas, E. (2004). Xanthan effect on swelling, solubility and viscosity of wheat starch dispersions. Food Hydrocolloids 18(2): 191-201. https://doi.org/10.1016/S0268-005X(03)00064-X.
  28. Maningat, C.C., Seib, P.A., Bassi, S.D., Woo, K.S., & Lasater, G.D. (2009). Wheat Starch. in: Starch (Third Edition), (Eds.) J. BeMiller, R. Whistler, Academic Press. San Diego.
  29. Mason, W.R. (2009). Starch Use in Foods. in: Starch (Third Edition), (Eds.) J. BeMiller, R. Whistler, Academic Press. San Diego, pp. 745-795.
  30. Matia-Merino, L., Prieto, M., Roman, L., & Gómez, M. (2019). The impact of basil seed gum on native and pregelatinized corn flour and starch gel properties. Food Hydrocolloids 89: 122-130. https://doi.org/10.1016/j.foodhyd.2018.10.005.
  31. Mirnezhad Anbarani, N., Razavi, S.M.A., & Taghizadeh, M. (2021). Impact of sage seed gum and whey protein concentrate on the functional properties and retrogradation behavior of native wheat starch gel. Food Hydrocolloids https://doi.org/10.1016/j.foodhyd.2020.106261.
  32. Murphy, P. (2000). Starch. in: Handbook of Hydrocolloids, (Eds.) G.O. Phillips, P.A. Williams, Woodhead Publishing Limited and CRC Press LLC.
  33. Naji-Tabasi, S., & Mohebbi, M. (2015). Evaluation of cress seed gum and xanthan gum effect on macrostructure properties of gluten-free bread by image processing. Journal of Food Measurement and Characterization 9(1): 110-119. https://doi.org/10.1007/s11694-014-9216-1.
  34. Naji, S., & Razavi, S.M.A. (2014). Functional and textural characteristics of cress seed (Lepidium sativum) gum and xanthan gum: Effect of refrigeration condition. Food Bioscience 5: 1-8. https://doi.org/10.1016/j.fbio.2013.10.003.
  35. Naji, S., Razavi, S.M.A., & Karazhiyan, H. (2012). Effect of thermal treatments on functional properties of cress seed (Lepidium sativum) and xanthan gums: A comparative study. Food Hydrocolloids 28(1): 75-81. https://doi.org/10.1016/j.foodhyd.2011.11.012.
  36. Naji, S., Razavi, S.M.A., & Karazhiyan, H. (2013). Effect of freezing on functional and textural attributes of Cress Seed Gum and Xanthan Gum. Food and Bioprocess Technology 6(5): 1302–1311. https://doi.org/10.1007/s11947-012-0811-z.
  37. Sahraiyan, B., Naghipour, F., Karimi, M., & Davoodi, M.G. (2013). Evaluation of Lepidium sativum seed and guar gum to improve dough rheology and quality parameters in composite rice–wheat bread. Food Hydrocolloids 30(2): 698-703. https://doi.org/10.1016/j.foodhyd.2012.08.013.
  38. Shevkani, K., Singh, N., Bajaj, R., & Kaur, A. (2017). Wheat starch production, structure, functionality and applications—a review. International Journal of Food Science & Technology 52(1): 38-58. https://doi.org/10.1111/ijfs.13266.
  39. Sun, Q., Wu, M., Bu, X., & Xiong, L. (2015). Effect of the amount and particle size of wheat fiber on the physicochemical properties and gel morphology of starches. https://doi.org/10.1371/journal.pone.0128665.
  40. Techawipharat, J., Suphantharika, M., & BeMiller, J.N. (2008). Effects of cellulose derivatives and carrageenans on the pasting, paste, and gel properties of rice starches. Carbohydrate Polymers 73(3): 417-426. https://doi.org/10.1016/j.carbpol.2007.12.019.
  41. Tester, R., & Sommerville, M. (2003). The effects of non-starch polysaccharides on the extent of gelatinisation, swelling and α-amylase hydrolysis of maize and wheat starches. Food Hydrocolloids 17(1): 41-54. https://doi.org/10.1016/S0268-005X(02)00032-2.
  42. Wang, S., Li, C., Copeland, L., Niu, Q., & Wang, S. (2015). Starch retrogradation: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety 14(5): 568-585. https://doi.org/10.1111/1541-4337.12143.
  43. Xing, Q., Hou, C., Zhang, Z., Han, K., Yan, Q., & Luo, J. (2017). Comparative study on the physicochemical properties of pea, chickpea, and wheat starch gels in the presence of sweeteners. Starch - Stärke 69(9-10): 1600287-n/a. https://doi.org/10.1002/star.201600287.
  44. Xiong, J., Li, Q., Shi, Z., & Ye, J. (2017). Interactions between wheat starch and cellulose derivatives in short-term retrogradation: Rheology and FTIR study. Food Research International 100: 858-863. https://doi.org/10.1016/j.foodres.2017.07.061.
  45. Zhang, H., Sun, B., Zhang, S., Zhu, Y., & Tian, Y. (2015). Inhibition of wheat starch retrogradation by tea derivatives. Carbohydrate Polymers 134: 413-417. https://doi.org/10.1016/j.carbpol.2015.08.018.
  46. Zhang, X., Li, R., Kang, H., Luo, D., Fan, J., Zhu, W., Liu, X., & Tong, Q. (2017). Effects of low molecular sugars on the retrogradation of tapioca starch gels during storage. PloS One 12(12): e0190180. https://doi.org/10.1371/journal.pone.0190180.
  47. Zhou, Y., Wang, D., Zhang, L., Du, X., & Zhou, X. (2008). Effect of polysaccharides on gelatinization and retrogradation of wheat starch. Food Hydrocolloids 22(4): 505-512. https://doi.org/10.1016/j.foodhyd.2007.01.010.
CAPTCHA Image