با همکاری انجمن علوم و صنایع غذایی ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مکانیک بیوسیستم، دانشگاه کشاورزی و منابع طبیعی رامین خوزستان.

2 گروه باغبانی، دانشگاه کشاورزی و منابع طبیعی رامین خوزستان.

3 گروه ماشین‌های کشاورزی و مکانیزاسیون، دانشگاه کشاورزی و منابع طبیعی رامین خوزستان.

چکیده

در این پژوهش به‌منظور ارزیابی کیفیت آب توت سیاه طی مراحل مختلف رسیدگی، پارامترهای فرکتالی استخراج شده توسط آنالیز فرکتال و پارامترهای بیوشیمیایی (TSS، ویتامین ث، اسیدیته، فنول، آنتوسیانین، مواد ایجاد کننده رنگ قهوه‏ای و (pHبه‌ترتیب به‌عنوان ویژگی‏های غیرمخرب و مخرب مورد استفاده قرار گرفتند؛ سپس از شبکه عصبی مصنوعی (ANN) و نزدیکترین همسایه (k-NN) به‌منظور توسعه مدل پیشگو و طبقه‌بندی داده‌ها استفاده گردید. از میان پنچ ویژگی استخراج شده از آنالیز فرکتال؛ Y و S که به‌ترتیب مربوط به بیشیه فرکتال و مساحت منحنی فرکتال می‏باشند، به‌عنوان موثرترین ویژگی در فرآیند آموزش شبکه عصبی و طبقه‌بند k-NN مورد استفاده قرار گرفتند. الگوریتم طبقه‌بند k-NN تغییرات رنگ در هر چهار مرحله رسیدگی را با دقت 08/97 طبقه‏بندی نمود. همچنین شبکه عصبی آنتوسیانین را با مجذور میانگین مربعات خطا (RMSE) 141/0، ضریب همبستگی 99/0، مواد ایجادکننده رنگ قهوه‏ای را با 0016/0= RMSE، ضریب همبستگی 97/0، فنول را با 879/1590=RMSE، ضریب همبستگی 8057/0، TSSرا با 0040/0=RMSE، ضریب همبستگی 907/0، اسیدیته را با 50/3=RMSE، ضریب همبستگی 986/0، ویتامین ث را با 285/0=RMSE، ضریب همبستگی 878/0 و pH را با 00017/0=RMSE و ضریب همبستگی 99/0 پیش‌بینی نمود. بنابراین، نتایج این بررسی نشان داد که شبکه عصبی مصنوعی و طبقه‌بند k-NN با آنالیز فرکتال می‌تواند به‌عنوان یک روش مناسب در ارزیابی برخط پارامترهای کیفی آب توت سیاه طی مراحل رسیدگی مورد استفاده قرار گیرد.

کلیدواژه‌ها

عنوان مقاله [English]

Predict changes of some quality parameters of black mulberry juice (Morusnigra L.) during ripening using machine vision and fractal analysis

نویسندگان [English]

  • Maryam Soltani Kazemi 1
  • Saman Abdanan 1
  • Mokhtar Heidari 2
  • Seyed Mojtaba Faregh 3

1 Mechanics of Biosystems Engineering Department, Faculty of Agricultural Engineering and Rural Development, Ramin Agriculture and Natural Resources University of Khuzestan, Iran.

2 Department of Horticulture, Faculty of Agriculture, Ramin Agriculture and Natural Resources University of Khuzestan, Iran.

3 Department, Faculty of Agricultural Engineering and Rural Development, Ramin Agriculture and Natural Resources University of Khuzestan, Iran.

چکیده [English]

Introduction: Blackberry is a perennial woody plant native to warm, temperate, and subtropical regions of Asia, Africa, North America, and southern Europe. Blackberry fruit (Morus Alba Varnigra L.) is a rich source of anthocyanins. Furthermore, it has great many medicinal properties such as an antidiabetic (Asano et al., 2001), antihyperglycemic (Andallu &Varadacharyulu, 2003), antiviral (Du et al., 2003), antioxidative (Kim et al., 1998), hypolipidemic (El-Beshbishy et al., 2006), and neuroprotective (Kang et al., 2006). However, measuring some qualitative and nutrient parameters in this fruit such as anthocyanins, vitamin C and phenol directly has become a major issue (Pace et al, 2013). Therefore, researchers try to predict aforementioned parameters by mathematical models. One of these models is the fractal model which is widely used to study the properties of the images/objects (Welstead, 1999; Zhang, 2007). Recently, many researchers try to develop different methods to classify or predict the agricultural products quality (Langner, 2001). In a research Seng and Mirisaee (2009) designed a machine vision algorithm for classification of fruits (apple, lemon, strawberry and banana) based on color, shape and size. Li and He investigated the application of visible/near infrared spectroscopy (Vis/NIRS) for measuring the acidity of Chinese bayberry. The model for prediction the acidity (r=0.963), standard error of prediction (SEP) 0.21 with a bias of 0.138 showed an excellent prediction performance. Therefore, the aim of this study was to predict biochemical parameters (TSS, anthocyanins, browning compounds, total phenols, Ascorbic Acid, pH) of blackberry juice, nondestructively, during maturity process using machine vision and fractal analysis. To develop predictive models and data classification, artificial neural networks (ANN) and k-nearest neighbor (k-NN) were used.

Materials and methods: Eighty blackberry fruits from four maturity stages were selected. The fruit samples were placed in airtight polyethylene bags, stored in an ice-filled cooler and transported to the laboratory to keep at cold temperature (4±1◦C).
Fresh fruits were squeezed by a household juicer, and immediately transported to the laboratory. Then, juice images were taken with a digital camera CASIO (Model Exilim EX-ZR700; 16 megapixels, Japan) and stored to the computer.
There are several ways to measure the fractal dimension. In this study, the proposed method by Addison (2005) was used to calculate the fractal dimension.
Feature selection is one of the issues that have been raised in the context of machine learning. In this study, floating search method feature selection was used (Pudil et al., 1994).
k-Nearest Neighbor (k-NN) is one of the simplest methods for information classification. In this study, the Euclidean distance between two points was used to determine the distance between the input data with the training patterns (Mucherino et al., 2009).
To train the neural network, Levenberg–Marquardt training algorithm was used. In this regard, the data were divided randomly into two parts (two-thirds for training (60) and one-third (20) for testing the network). Input parameters were Xa, Xb, X, Y and S and output parameters were TSS, ascorbic acide, acidity, polyphenols, anthocyanins, brown-causing substances and pH. Moreover, in this study, the number of neurons in the hidden layer was selected by trial and error method.
After selecting the best features extracted from the image processing with the highest correlation with chemical parameters (TSS, anthocyanins, total phenols, ascorbic acid, and pH), a machine vision system was designed and built to be able to determine the internal properties of black mulberry juice.
Total soluble solids (TSS) were determined by a hand refractometer device (model: MT03 Japan). The anthocyanin content was estimated following the procedure of Holecraft et al., (1998). Ascorbic acid of the juice was measured by titration with copper sulfate and potassium iodide based on the Barakat et al., (1973) procedure. Titratable acidity was measured according to the Eksi and Turkman, (2011) method. Waterhouse (2002) method was used for measuring the total phenol of juice.

Results and discussion: Artificial neural network (ANN) and (k-NN) models were used to predict the changes of anthocyanin (AC), browning compounds, ascorbic acid (AA), total phenols (TP), acidity, TSS and pH in mulberry juice during ripening based on fractal analysis. Two features namely: maximum fractal and fractal curve area were selected from five extracted features and used for training neural network and k-NN classifier

کلیدواژه‌ها [English]

  • ANN
  • K-NN
  • Fractal Dimension
  • Biochemical parameters
Addison, P.S., 2005, Fractals and Chaos: IOP Publishing.
Agati, G., Pinelli, P., Ebner, S. C., Romani, A., Cartelat, A. & Cerovic, Z. G., 2005, Nondestructive evaluation of anthocyanins in olive (Oleaeuropaea) fruits by in situ chlorophyll fluorescence spectroscopy. Journal of Agricultural and Food Chemistry, 53, 1354-1363.
Ahmad Mustafa, N.B., Ahmed, S.K., Zaipatimah Ali, Yit, W.B., Zainul Abidin, A.A. & Md Sharrif, Z.A., 2010, Agricultural Produce Sorting and Grading using Support Vector Machines and Fuzzy Logic‖, IEEE International Conference on Signal and Image Processing Applications, 617-623.
Alighourchi, H. & Barzegar, M., 2009, Some physicochemical characteristics and degradation kinetic of anthocyanin of reconstituted pomegranate juice during storage. J. Food Eng, 90, 179-185.
Al-Zubaidy, M. M. I. & Khalil, R. A., 2007, Kinetic and prediction studies of ascorbic acid degradation in normal and concentrate local lemon juice during storage. Food Chem, 101, 254-259.
Andallu, B. & Varadacharyulu, N.C., 2003, Antioxidant role of mulberry (Morus indica L. cv. Anantha) leaves in streptozocin-diabetic rate. Clinica Chimica Acta, 338, 3-10.
Asano, N., Yamashita, T., Yasuda, K., Ikeda, Kizu, H. & Kameda, Y., et al., 2001, Polyhydroxylated alkaloid isolated from mulberry trees (Moros alba L.) and silkworms (Bombyx mori L.). Journal of Agricultural and Food Chemistry, 49, 4208-4213.
Auria, L. & Moro, R. A., 2008, Support vector machines (svm) as a technique for solvency analysis, Technical report, Discussion papers: Ger- man Institute for Economic Research (Deutsches Institut fr Wirtschafts- forschung, Berlin).
Barakat, M. Z., Shehab, S.K., Darwish, N. & El-Zoheiry, A., 1973, A new titrimetric method for the determination of vitamin C. Analalytical Biochemistry, 53, 245-251.
Barrett, A. H. & Peleg, M., 1995, Applications of fractal analysis to food structure. LWT-Food Sci. Technol, 28, 553-563.
Bila, S., Harkouss, Y., Ibrahim, M., Rousset, J., N’Goya, E., Baillargeat, D., Verdeyme, S., Aubourg, M. & Guillon, P., 1999, An accurate wavelet neural-network-based model for electromagnetic optimization of microwave circuits. Int. J. RF Microwave CAE, 93, 297-306.
Blasco, J., Aleixos, N., Cubero, S., Gomez-Sanchis, J. & Molto, E., 2009, Automatic sorting of satsuma (Citrus unshiu) segments using computer vision and morphological features. Computers and Electronics in Agriculture, 66, 1–8.
Burdurlu, H. S., Koca, N. & Karadeniz, F., 2006, Degradation of vitamin C in citrus juice concentrates during storage. J. Food Eng, 74, 211-216.
Cemeroglu, B., Velioglu, S. & Isik, S., 1994, Degradation kinetics of anthocyanins in sour cherry juice and concentrate. J. Food Sci, 59, 1216-1218.
Damiri, D. J. & Slamet, C., 2012, Application of image processing and ar- tificial neural networks to identify ripeness and maturity of the lime (citrus medica), International Journal of Basic and Applied Science, 1(2), 171–179.
Diaz, R., Faus, G., Blasco, M. & Molto, E., 2000, The application of a fast algorithm for the classification of olives by machine vision. Food Research International, 33, 305–309.
Dogan, A., Demirpence, H. & Cobaner, M., 2008, Prediction of groundwater levels from lake levels and climate data using ANN approach. Water SA, 34 (2), 1-10.
Du, J., He, Z.D., Jiang, R.W., Ye, W.C., Xu, H.X. & But, P.P.H., 2003, Antiviral flavonoids from the root bark of Morus alba L. photochemistry, 62, 1235-1238.
Eksi, A. & Turkmen, I., 2011, Brix degree and sorbitol/xylitol level of authentic pomegranate (punica granatum L.) juice. Food Chemistry, 127(3), 1404-1407.
El-Beshbishy, H.A., Singab, A.N.B., Sinkkonen, J. & Pihlaja, K., 2006, Hypolipidemic and antioxidant effect of Morus alba L. (Egyption mulberry) root bark fraction supplementation in cholesterol-fed rats. Life Siences, 78, 2724-2733.
Fang, Y. C. & Wu, B. W., 2007, Neural network application for thermal image recognition on flow-resolution objects. J. Opt. A: Pure Appl. Opt, 9 (2), 134-144.
Furferi, R., Governi, L., & Volpe, Y., 2010, ANN-based method for olive ripening index automatic prediction.J. Food Eng, 101, 318-328.
Guru, D.S., Sharath, Y.H. & Manjunath, S., 2010, “Texture Features and K-NN in Classification of Flower Images”, IJCA Special Issue on “Recent Trends in Image Processing and Pattern Recognition”, RTIPPR.
Haykin, S., 1994, Neural network: A comprehensive foundation. New York, NY: Macmillan.
He, Z., You, X., & Yuan, Y., 2009, Texture image retrieval based on nontensor product wavelet filter banks. Signal Process, 89, 1501-1510.
Holecraft, D. M., Gil, M. I. & Keder, A. A., 1998, Effects of carbon dioxid on anthocyanine ammonia, phenylalanine, ammonia lyse and glocosyltransterase in the arils of stored pomegranates. Journal American Society Horticulture Science, 123(1), 136-140.
Kaastra, I., & Boyd, M., 1996, Designing a neural network for forecasting financial and economic time series. Neurocomputing, 10, 215-236.
Kang, T.H., Hur, J.Y., Kim, H.B, Ryu, J.H. & Kim, S.Y., 2006, Neuroprotective effects of the cyaniding-3-O-â-D-glucopyranoside isolated from mulberry fruit against cerebral ischemia. Neuroscience Letters, 391, 168-172.
Kim, S.Y., Park, K.J. & Lee, W.C., 1998, Antiinflamatory and antioxidative effect of Morus spp. Fruit extract. Korean Journal of Medicinal Crop Science, 6, 204-209.
Kumar, S. & Kaur, H., 2012, Face recognition techniques: Classification and comparisons, International Journal of Information Technology and Knowledge Management, 5(2), 361–363.
Langner, J., 2001, Leaves Recognition v.1.0. Retrieved from http://www.jenslangner.de/lrecog.
Laykin, S., Alchanatis V. & Edan Y., 2002, Image processing algorithms for tomato classifications. Transactions of the ASAE, 45, 851–858.
Laykin, S., Alchanatis, V., Edan, Y. & Weisman, Z., 2008, Image Processing Algorithms for Table Olives Classification.
Lee, W. S., Alchanatis, V., Yang, C., Hirafuji, M., Moshou, D. & Li, C., 2010, Sensing technologies for precision specialty crop production. Computers and Electronics in Agriculture, 74, 2-33.
Mandelbrot, B. B., 1982, Fractal Geometry of Nature; Freeman Press: San Francisco, CA.
Mendoza, F., Valous, N.A., Paul Allen, P., Kenny, T.A., Paddy Ward, p. & Sun, D.W., 2009, Analysis and classification of commercial ham slice images using directional fractal dimension features. Meat Science, 81, 313–320.
Mendoza, L. & Aguilera, J.M., 2004, Application of image analysis for classification of ripening bananas. Journal of Food Science, 69, 471–477.
Mohana S.H. & Prabhakar C.J., 2014, A novel Technique for grading of dates using shape and texture features. An International Journal (MLAIJ) Vol.1, No.2, 15-29.
Mucherino, A., Papajorgji, P. J. & Pardalos, P. M., 2009, Data mining in agriculture (Vol. 34). Springer Science & Business Media.
Ninawe, P. & Pandey, Sh., 2014, A Completion on Fruit Recognition System Using K-Nearest Neighbors Algorithm. International Journal of Advanced Research in Co Engineering & Technology (IJARCET) Volume 3 Issue 7, 2352-2356.
Ozgen, M., Serc, E.S. & Kaya, C., 2009, Phytochemical and antioxidant properties of anthocyanin-rich Morusnigra and Morusrubra fruits. Sci. Hortic, 119, 275–279.
Pace, B., Cefola, M., Renna, F., Renna, M. & Serio, F, 2013, Multiple regression models and computer vision systems to predict antioxidant activity and total phenols in pigmented carrots. Journal of Food Engineering, 117, 74-81
Pandolfi, C., Messina, G., Mugnai, S., Azzarello, E., Masi, E., Dixon, K. & Mancuso, S., 2009, Discrimination and identification of morphotypes of Banksia integrifolia (Proteaceae) by an artificial, neural network (ANN) based on morphological and fractal parameters of leaves and flowers. TAXON, 58 (3), 925-933.
Parlak, A., Islamoglu, Y., Yasar, H. & Egrisogut, A., 2006, Application of artificial neural network to predict specific fuel consumption and exhaust temperature for a diesel engine. Appl. Therm. Eng, 26, 824-828.
Paulraj, M., Hema, C. R., R Pranesh, K. & Siti Sofiah, M. R., 2009, Color recognition algorithm using a neural network model in determining the ripeness of a banana, The International Conference on Man-Machine Systems (ICoMMS), Universiti Malaysia Perlis, pp. 2B71–2B74.
Pudil, P., Novovičova, J. & Kittler, J., 1994, Floating search methods in feature selection. Pattern recognition letters, 15(11), 1119-1125.
Quevedo, R., Mendoza, F., Aguilera, J.M., Chanona, & Gutie´rrez-Lo´pez, J., 2008, Determination of senescent spotting in banana (Musa Cavendish) using fractal texture Fourier image. Journal of Food Engineering, 84, 509–515.
Quevedo, R., Pedreschi, F., Bastias, J.M. & Diaz, O., 2016, Correlation of the fractal enzymatic browning rate with the temperature in mushroom, pear and apple slices. LWT - Food Science and Technology, 65, 406-413.
Ragni, L., Berardinelli, A. & Guarnieri, A., 2010, Impact device for measuring the flesh firmness of kiwifruits. Journal of Food Engineering, 96, 591-597.
Seng, W.C. & Mirisaee, S.H., 2009, " A New Method for Fruits Recognition System ", International Conference on Electrical Engineering & Informatics, Selangor, 346-350.
Serrano, M., Guillean., F., Martinez-Romero, D., Castillo, S. & Valero, D., 2005, Chemical constituents and antioxidant activity of sweet cherry at different ripening stage. Journal of Agricultural and Food Chemistry, 53, 2741-2745.
Shah Rizam, M., Farah Yasmin, A., Ahmad Ihsan, M. & Shazana, K., 2009, Non-destructive watermelon ripeness determination using image processing and artificial neural network (ann), International Journal of Electrical and Computer Engineering 4(6).
Taghadomi-Saberi, S., Omid, M., Emam-Djomeh, Z. & Ahmadi, H., 2013, Development of an intelligent system to determine sour cherry's antioxidant activity and anthocyanin content during ripening. International Journal of Food Properties, 48, 735-741.
Thygesen, L.G., Thybo, A.K., & Engelsen, S.B., 2001, Prediction of sensory texture quality of boiled potatoes from lowfield1H NMR of raw potatoes. The role of chemical constituents. Lebensmittel-Wissenschaft-und-Technologie, 34, 469–477.
Waterhouse, A. L., 2002, Determination of total phenolics. In: Current Protocols in Food Analytical Chemistry, 11(1), 11-18.
Welstead, S., 1999, Fractal and Wavelet Image Compression Techniques: Tutorial in optical engineering, Volume TT40.
Yuanyou, X., Yanming, X, & Ruigeng, Z., 1997, An engineering geology evaluation method based on an artificial neural network and its application. Eng. Geol, 47 (1-2), 149-156.
Zadernowski, R., Naczk, M. & Nesterowicz, J., 2005, Phenolic acid profiles in some small berries. Journal of Agricultural and Food Chemistry, 53, 2118-2124.
Zhang, J., Zhang, B., & Bai, S., 2007, Fractal Image Processing and Analysis by Programming in Matlab: Proceeding of 8th WSEAS Int. Conference on Mathematics and Computers in Biology and Chemistry, Vancouver, Canada, June 19-21.
Zheng, C., Sun, D.W. & Zheng, L., 2006, Recent developments and applications of image features for food quality evaluation and inspection – a review. Trends in Food Science and Technology, 17, 642–655.
Zheng, H., Jiang, L., Lou, H., Hu, Y., Kong, X. & Lu, H., 2011, Application of Artifical Neural Network (ANN) and Partical Least-Squares Regression (PLSR) to Predict the Changes of Anthocyanins, Ascorbic Acid, Total Phenols, Flavonoids, and Antioxidant Activity during Storage of Red Bayberry Juice Based on Fractal Analysis and Red, Green, and Blue (RGB) Intensity Values. J. Agric. Food Chem, 59, 592-600
CAPTCHA Image