با همکاری انجمن علوم و صنایع غذایی ایران

نوع مقاله : مقاله پژوهشی لاتین

نویسنده

گروه مهندسی بیوسیستم، دانشکده مهندسی کشاورزی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، مازندران، ایران

چکیده

در این مطالعه، یک مدل ریاضیاتی برای غیرفعال کردن مخمر از طریق تیمار پلاسما مورد بررسی قرار گرفت. از طرح غربالگری تشخیصی برای جستجوی فاکتورهایی که در غیرفعال کردن با پلاسما موثر هستند، استفاده شد. چهار فاکتور ولتاژ (20- 30 کیلوولت) (A)، قطر ظرف (40- 60 میلی‌متر) (B)، درجه حرارت فرآیند (20- 40 درجه سانتی‌گراد ) (C) و نوع محیط پلاسما (هوا یا آب) در این مطالعه بررسی شدند. سپس تیمارها با نرم‌افزار COMSOL شبیه‌سازی شدند. پاسخ‌های ضریب سنتیک واکنش، غلظت ازون و زمان غیرفعال شدن نهایی توسط طرح غربالگری فاکتورها در نرم‌افزار دیزاین اکسپرت تحلیل شدند تا پارامترهای موثر مدل ریاضیاتی و شرایط بهینه تعیین شوند. نتایج نشان دادند که تیمار با پلاسما در محیط آبی می‌تواند اثر قوی­تری نسبت به هوا داشته باشد. همچنین در تیمار با پلاسما، نوع محیط اثر بارزی بر هر سه پاسخ داشت، در حالیکه درجه حرارت تنها بر زمان فرآیند موثر بود. بنابراین می‌توان نتیجه گرفت که با بررسی و انتخاب مناسب محیط، می‌توان از تکنولوژی پلاسما برای غیرفعال‌سازی میکروارگانیسم‌ها در مواد غذایی استفاده کرد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Finding effective plasma process factors on yeast deactivation by numerical simulation and RSM

نویسنده [English]

  • Azadeh Ranjbar Nedamani

Department of Biosystem Engineering, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Sari, Mazandaran, Iran.

چکیده [English]

In recent years, there has been an increasing interest in the application of plasma technology in food preservation technologies. Plasma is nonthermal physical processing that has a high potential in the field of  food processing. In this study, a mathematical model was investigated for yeast deactivation during plasma treatment. The definitive screen design was used to investigate the factors that affect yeast deactivation by plasma. Four factors of voltage (A: 20- 30 kV), Vessel diameter (B: 40- 60 mm), process temperature (C: 20- 40ºC), and type of plasma media (air or water) were selected. Then the treatment was simulated by COMSOL software. The responses of reaction kinetics coefficient, the ozone concentration, and final deactivation time were analyzed by definitive screen design expert to find the effective model parameters and process optimization. The results show that plasma treatment in water can have the strongest effect than air plasma. The changes in the number of microorganisms have a linear relationship with process time at different voltage- temperature conditions, but the ozone concentration dramatically changes at different combinations of voltage and temperature. The analyzed data show the kreac is affected significantly by the diameter of the vessel and the 221 types of process media (water or air). The ozone concentration only depends on the type of plasma media and the final 223 process time significantly depends on vessel diameter and type of media. Also, in plasma treatment, media type had a significant effect on all 3 responses, while the effect of temperature was only on final process time. For example, at temperature 20ºC the ozone concentration decreased at the first time of treatment and then stay constant, but at 30ºC, the ozone production increased with treatment time. This study showed when an RSM design was applied for designing the experiment which considers different process factors, the results can significantly differ from the study on only one-factor. In plasma treatment, media type had a significant effect on all 3 responses, while the temperature shows its effect only on final process time. Thus it can be concluded that with proper selecting of plasma media, this technology can be used for deactivation of food microorganisms

کلیدواژه‌ها [English]

  • Plasma treatment
  • Microorganism deactivation
  • CFD simulation
  • RSM design
  1. Aliakbarian, B., Sampaio, F. C., de Faria, J. T., Pitangui, C. G., Lovaglio, F., Casazza, A. A., Perego, P. (2018). Optimization of spray drying microencapsulation of olive pomace polyphenols using Response Surface Methodology and Artificial Neural Network. LWT, 93, 220- https://doi.org/10.1016/j.lwt.2018.03.048
  2. Basaran, P., Basaran-Akgul, N., & Oksuz, L. (2008). Elimination of Aspergillus parasiticus from nut surface with low pressure cold plasma (LPCP) treatment. Food Microbiology, 25(4), 626-632. https://doi.org/10.1016/j.fm.2007.12.005
  3. Bourke, P., Ziuzina, D., Boehm, D., Cullen, P. J., & Keener, K. (2018). The Potential of Cold Plasma for Safe and Sustainable Food Production. Trends Biotechnol, 36(6), 615-626. https://doi.org/10.1016/j.tibtech.2017.11.001
  4. Bruggeman, P., & Leys, C. (2009). Non-thermal plasmas in and in contact with liquids. Journal of Physics D: Applied Physics, 42(5),
  5. Chilka, A. G., & Ranade, V. V. (2019). CFD modelling of almond drying in a tray dryer. The Canadian Journal of Chemical Engineering, 97(2), 560-572. doi:10.1002/cjce.23357
  6. Chizoba Ekezie, F. G., Sun, D. W., & Cheng, J. H. (2017). A review on recent advances in cold plasma technology for the food industry: Current applications and future trends. Trends in Food Science & Technology, 69, 46- doi:10.1016/j.tifs.2017.08.007
  7. Guo, L., Xu, R., Gou, L., Liu, Z., Zhao, Y., Liu, D.,. . . Kong, M. G. (2018). Mechanism of Virus Inactivation by Cold Atmospheric-Pressure Plasma and Plasma-Activated Water. Applied and
  8. Environmental Microbiology, 84(17), e00726-00718. doi:10.1128/aem.00726-18
  9. Heldman, D. R., & Lund, D. B. (2007). Handbook of food engineering.
  10. Ibarz, A., & Barbosa-Cánovas, G. V. (2002). Unit operations in food engineering: CRC press.
  11. Islam Shishir, M. R., Taip, F. S., Aziz, N. A., Talib, R. A., & Hossain Sarker, M. S. (2016). Optimization of spray drying parameters for pink guava powder using RSM. Food Sci Biotechnol, 25(2), 461468. doi:10.1007/s10068-016-0064-0
  12. Julák, J., Hujacová, A., Scholtz, V., Khun, J., & Holada, K. (2018). Contribution to the Chemistry of Plasma-Activated Water. Plasma Physics Reports, 44(1), 125-136. doi:10.1134/S1063780X18010075
  13. Liao, X., Liu, D., Xiang, Q., Ahn, J., Chen, S., Ye, X., & Ding, T. (2017). Inactivation mechanisms of non-thermal plasma on microbes: A review. Food Control, 75, 83-91. doi:10.1016/j.foodcont.2016.12.021
  14. Liao, X., Su, Y., Liu, D., Chen, S., Hu, Y., Ye, X., . . . Ding, T. (2018). Application of atmospheric cold plasma-activated water (PAW) ice for preservation of shrimps (Metapenaeus ensis). Food
  15. Control, 94, 307-314. doi:10.1016/j.foodcont.2018.07.026
  16. Lisboa, H. M., Duarte, M. E., & Cavalcanti-Mata, M. E. (2018). Modeling of food drying processes in industrial spray dryers. Food and Bioproducts Processing, 107, 49-60. doi:10.1016/j.fbp.2017.09.006
  17. Locke, B., Sato, M., Sunka, P., Hoffmann, M., & Chang, J. S. (2006). Electrohydraulic discharge and nonthermal plasma for water treatment. Industrial & engineering chemistry research, 45(3), https://doi.org/10.1021/ie050981u
  18. Majeed, M., Hussain, A. I., Chatha, S. A., Khosa, M. K., Kamal, G. M., Kamal, M. A., . . . Liu, M. (2016). Optimization protocol for the extraction of antioxidant components from Origanum vulgare leaves using response surface methodology. Saudi J Biol Sci, 23(3), 389-396. doi:10.1016/j.sjbs.2015.04.010
  19. Misra, N. N., Pankaj, S. K., Segat, A., & Ishikawa, K. (2016). Cold plasma interactions with enzymes in foods and model systems. Trends in Food Science & Technology, 55, 39-47. doi:10.1016/j.tifs.2016.07.001
  20. Misra, S., Raghuwanshi, S., & Saxena, R. K. (2013). Statistical approach to study the interactive effects of process parameters for enhanced xylitol production by Candida tropicalis and its potential for the synthesis of xylitol monoesters. Food Science and Technology International, 19(6), 535-548. doi:10.1177/1082013212462230
  21. Muhammad, A. I., Liao, X., Cullen, P. J., Liu, D., Xiang, Q., Wang, J., . . . Ding, T. (2018). Effects of Nonthermal Plasma Technology on Functional Food Components. Comprehensive Reviews in Food Science and Food Safety, 17(5), 1379-1394. doi:10.1111/1541-4337.12379
  22. Pankaj, S. K., Bueno-Ferrer, C., Misra, N. N., Milosavljević, V., O'Donnell, C. P., Bourke, P., Cullen, P. J. (2014). Applications of cold plasma technology in food packaging. Trends in Food Science & Technology, 35(1), 5-17. doi:10.1016/j.tifs.2013.10.009
  23. Pankaj, S. K., Wan, Z., & Keener, K. M. (2018). Effects of Cold Plasma on Food Quality: A Review. Foods, 7(1). doi:10.3390/foods7010004
  24. Perinban, S., Orsat, V., & Raghavan, V. (2019). Nonthermal Plasma–Liquid Interactions in Food Processing: A Review. Comprehensive Reviews in Food Science and Food Safety, 18(6), doi:10.1111/1541-4337.12503
  25. Sakudo, A., Yagyu, Y., & Onodera, T. (2019). Disinfection and sterilization using plasma technology: Fundamentals and future perspectives for biological applications. International journal of molecular sciences, 20(20), 5216. https://doi.org/10.3390/ijms20205216
  26. Sumic, Z., Vakula, A., Tepic, A., Cakarevic, J., Vitas, J., & Pavlic, B. (2016). Modeling and optimization of red currants vacuum drying process by response surface methodology (RSM). Food Chem, 203, 465-475. doi:10.1016/j.foodchem.2016.02.109
  27. Surowsky, B., Fischer, A., Schlueter, O., & Knorr, D. (2013). Cold plasma effects on enzyme activity in a model food system. Innovative Food Science & Emerging Technologies, 19, 146-152. doi:10.1016/j.ifset.2013.04.002
  28. Surowsky, B., Schlüter, O., & Knorr, D. (2014). Interactions of Non-Thermal Atmospheric Pressure Plasma with Solid and Liquid Food Systems: A Review. Food Engineering Reviews, 7(2), doi:10.1007/s12393-014-9088-5
  29. Tabibian, S., Labbafi, M., Askari, G., Rezaeinezhad, A., & Ghomi, H. (2020). Effect of gliding arc discharge plasma pretreatment on drying kinetic, energy consumption and physico-chemical properties of saffron (Crocus sativus). Journal of Food Engineering, 270, 109766. https://doi.org/10.1016/j.jfoodeng.2019.109766
  30. Thagard, S. M., Takashima, K., & Mizuno, A. (2009). Chemistry of the positive and negative electrical discharges formed in liquid water and above a gas–liquid surface. Plasma Chemistry and Plasma Processing, 29(6), 455-473. https://doi.org/10.1007/s11090-009-9195-x
  31. Valentas, K. J., Rotstein, E., & Singh, R. P. (1997). Handbook of food engineering practice: CRC press.
  32. Wang, Y., Wang, Z., Yang, H., & Zhu, X. (2020). Gas phase surface discharge plasma model for yeast inactivation in water. Journal of Food Engineering, 286, 110117. https://doi.org/10.1016/j.jfoodeng.2020.110117
  33. Xiang, Q., Kang, C., Niu, L., Zhao, D., Li, K., & Bai, Y. (2018). Antibacterial activity and a membrane damage mechanism of plasma-activated water against Pseudomonas deceptionensis CM2. LWT, 96, 395-401. doi:10.1016/j.lwt.2018.05.059
  34. Xiang, Q., Liu, X., Liu, S., Ma, Y., Xu, C., & Bai, Y. (2019). Effect of plasma-activated water on microbial quality and physicochemical characteristics of mung bean sprouts. Innovative Food
  35. Science & Emerging Technologies, 52, 49-56. doi:10.1016/j.ifset.2018.11.012
  36. Yuan, Y., Tan, L., Xu, Y., Yuan, Y., & Dong, J. (2019). Numerical and experimental study on drying shrinkage-deformation of apple slices during process of heat-mass transfer. International Journal of Thermal Sciences, 136, 539-548. https://doi.org/10.1016/j.ijthermalsci.2018.10.042
  37. Zhang, Q., Liang, Y., Feng, H., Ma, R., Tian, Y., Zhang, J., & Fang, J. (2013). A study of oxidative stress induced by non-thermal plasma-activated water for bacterial damage. Applied physics letters, 102(20). doi:10.1063/1.4807133

 

CAPTCHA Image