نوع مقاله : مقاله پژوهشی فارسی

نویسندگان

گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

چکیده

در پژوهش حاضر، اثر صمغ کاپاکاراگینان (0، 1/0، 3/0، 5/0 و 7/0 درصد) بر ویژگی‌های مکانیکی (آزمون فشاری تک محور)، رئولوژیکی (آزمون­های برشی پایا، کرنش متغیر و فرکانس متغیر) و ظرفیت نگهداری آب ژل سرد پر شده امولسیونی مبتنی بر ایزوله پروتئین آب پنیر بررسی شد. طبق نتایج آزمون برشی پایا، تمامی نمونه‌ها دارای رفتار تضعیف شونده با برش بودند و بر اساس مدل قانون توان، در حضور کاپاکاراگینان این رفتار تشدید می­شد؛ و با افزایش غلظت صمغ از صفر تا 7/0 درصد، مقدار ضریب قوام از 9/339 تا 7/545 پاسکال در ثانیه افزایش می­یافت. در آزمون کرنش متغیر، با افزایش درصد صمغ مقادیر مدول الاستیک و ویسکوز در ناحیه خطی و مدول در نقطۀ متقاطع افزایش یافتند و tan dLVE از 17/0 به 13/0 کاهش پیدا کرد که بیانگر افزایش استحکام ساختار شبکه ژل امولسیون بود. بر اساس آزمون فرکانس متغیر، با افزایش غلظت کاپاکاراگینان، پارامترهای  و ، قدرت شبکه و گسترش شبکه به‌ترتیب از 8/5311 پاسکال، 9/939 پاسکال، 1/5380 پاسکال در ثانیه و 05/10 در نمونۀ ژل امولسیون شاهد تا 6/25080 پاسکال، 9/3574 پاسکال، 7/16097 پاسکال در ثانیه و 41/16 در نمونۀ حاوی 7/0 درصد کاراگینان افزایش یافتند. به­طور کلی، در ژل­های امولسیونی مرکب، مقادیر مدول ظاهری الاستیسیته و تنش شکست بیشتر و کرنش شکست و انرژی شکست کمتر از نمونه شاهد بود. همچنین، نتایج نشان داد که غلظت­های مختلف کاپاکاراگینان اثر معنی­داری بر ظرفیت نگهداری آب نمونه­های ژل امولسیون نداشت. نتایج این پژوهش می­تواند به دانش تولید غذاهای کاربردی جدید مبتنی بر برهمکنش پروتئین-پلی ساکارید بیفزاید.

کلیدواژه‌ها

موضوعات

©2023 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source.

  1. Alavi, F., Emam-Djomeh, Z., Mohammadian, M., Salami, M., & Moosavi-Movahedi, A.A. (2020). Physico-chemical and foaming properties of nanofibrillated egg white protein and its functionality in meringue batter. Food Hydrocolloids, 101, 105554. https://doi.org/10.1016/j.foodhyd.2019.105554
  2. Alghooneh, A. (2019). Biopolymers identification and clustering based on rheological, thermal, and structural properties. (Ph.D. thesis), Ferdowsi University of Mashhad. (In Persian)
  3. Anvari, M., Joyner, H.S. (2017). Effect of fish gelatin-gum arabic interactions on structural and functional properties of concentrated emulsions. Food Research International, 102, 1-7. https://doi.org/10.1016/j.foodres.2017.09.085
  4. Babaei, J., Mohammadian, , & Madadlou, A. (2019). Gelatin as texture modifier and porogen in egg white hydrogel. Food Chemistry, 270, 189-195. https://doi.org/10.1016/j.foodchem.2018.07.109
  5. Bao, H., Ni, Y., Dong, H., & Liang, L. (2020). α-Tocopherol and resveratrol in emulsion-filled whey protein gels: Co-encapsulation and in vitro digestion. International Dairy Journal, 104, 104649. https://doi.org/10.1016/j.idairyj.2020.104649
  6. Behrouzain, F., & Razavi, S.M.A. (2020). Structure-rheology relationship of basil seed gum-whey protein isolate mixture: Effect of thermal treatment and biopolymer ratio. Food Hydrocolloids, 102, 105608. https://doi.org/10.1016/j.foodhyd.2019.105608
  7. Çakır, E., & Foegeding, E.A. (2011). Combining protein micro-phase separation and protein–polysaccharide segregative phase separation to produce gel structures. Food Hydrocolloids, 25(6), 1538-1546. https://doi.org/10.1016/j.foodhyd.2011.02.002
  8. Chen, H., Mao, L., Hou, Z., Yuan, F., & Gao, Y. (2020). Roles of additional emulsifiers in the structures of emulsion gels and stability of vitamin E. Food Hydrocolloids, 99, 105372. https://doi.org/10.1016/j.foodhyd.2019.105372
  9. de Jong, S., & van de Velde, F. (2007). Charge density of polysaccharide controls microstructure and large deformation properties of mixed gels. Food Hydrocolloids, 21(7), 1172-1187. https://doi.org/10.1016/j.foodhyd.2006.09.004
  10. Farjami, T., & Madadlou, A. (2019). An overview on preparation of emulsion-filled gels and emulsion particulate gels. Trends in Food Science and Technology, 86, 85-94. https://doi.org/10.1016/j.tifs.2019.02.043
  11. Gabriele, D., Migliori, M., Di Sanzo, R., Rossi, C.O., Ruffolo, S.A., & De Cindio, B. (2009). Characterisation of dairy emulsions by NMR and rheological techniques. Food Hydrocolloids, 23(3), 619-628. https://doi.org/10.1016/j.foodhyd.2008.05.002
  12. Hyun, K., Kim, S.H., Ahn, K.H., & Lee, S.J. (2002). Large amplitude oscillatory shear as a way to classify the complex fluids. Journal of Non-Newtonian Fluid Mechanics, 107, 51-65. https://doi.org/10.1016/S0377-0257(02)00141-6
  13. Jang, B.-K., & Matsubara, H. (2005). Influence of porosity on hardness and Young's modulus of nanoporous EB-PVD TBCs by nanoindentation. Materials Letters, 59(27), 3462-3466. https://doi.org/10.1016/j.matlet.2005.06.014
  14. Jiang, S., Altaf hussain, M., Cheng, J., Jiang, Z., Geng, H., & Sun, Y. (2018). Effect of heat treatment on physicochemical and emulsifying properties of polymerized whey protein concentrate and polymerized whey protein isolate. LWT-Food Science and Technology, 98, 134–140. https://doi.org/10.1016/j.lwt.2018.08.028
  15. Kazemi-Taskooh, Z., & Varidi, M. (2021). Designation and characterization of cold-set whey protein-gellan gum hydrogel for iron entrapment. Food Hydrocolloids, 111, 106205. https://doi.org/10.1016/j.foodhyd.2020.106205
  16. Khubber, S., Chaturvedi, K., Thakur, N., Sharma, N., & Yadav, S.K. (2021). Low-methoxyl pectin stabilizes low-fat set yoghurt and improves their physicochemical properties, rheology, microstructure and sensory liking. Food Hydrocolloids, 111, 106240. https://doi.org/10.1016/j.foodhyd.2020.106240
  17. Liu, F., Liang, X., Yan, J., Zhao, S., Li, S., Liu, X., & McClements, D.J. (2022). Tailoring the properties of double-crosslinked emulsion gels using structural design principles: Physical characteristics, stability, and delivery of lycopene. Biomaterials, 280, 121265. https://doi.org/10.1016/j.biomaterials.2021.121265
  18. Liu, K., Stieger, M., van der Linden, E., & van de Velde, F. (2015). Fat droplet characteristics affect rheological, tribological and sensory properties of food gels. Food Hydrocolloids, 44, 244-259. https://doi.org/10.1016/j.foodhyd.2014.09.034
  19. Lu, Y., Mao, L., Hou, Z., Miao, S., & Gao, Y. (2019). Development of emulsion gels for the delivery of functional food ingredients: from structure to functionality. Food Engineering Reviews, 11(4), 245-258. https://org/10.1007/s12393-019-09194-z
  20. Luo, N., Ye, A., Wolber, F.M., & Singh, H. (2020). In-mouth breakdown behaviour and sensory perception of emulsion gels containing active or inactive filler particles loaded with capsaicinoids. Food Hydrocolloids, 108, https://doi.org/10.1016/j.foodhyd.2020.106076
  21. Maltais, A., Remondetto, G.E., & Subirade, M. (2010). Tabletted soy protein cold-set hydrogels as carriers of nutraceutical substances. Food Hydrocolloids, 24, 518–524. https://doi.org/10.1016/j.foodhyd.2009.11.016
  22. Mao, L., Miao, S., Yuan, F., & Gao, Y. (2018). Study on the textural and volatile characteristics of emulsion filled protein gels as influenced by different fat substitutes. Food Research International, 103, 1-7. https://doi.org/10.1016/j.foodres.2017.10.024
  23. Marcotte, M., Hoshahili, A.R.T., & Ramaswamy, H.S. (2001). Rheological properties of selected hydrocolloids as a function of concentration and temperature. Food Research International, 34(8), 695-703. https://doi.org/10.1016/S0963-9969(01)00091-6
  24. Moreno, H.M., Domínguez-Timón, F., Díaz, M.T., Pedrosa, M.M., Borderías, A.J., & Tovar, C.A. (2020). Evaluation of gels made with different commercial pea protein isolate: Rheological, structural and functional properties. Food Hydrocolloids, 99, 105375. https://doi.org/10.1016/j.foodhyd.2019.105375
  25. Munialo, C.D., van der Linden, E., Ako, K., Nieuwland, M., Van As, H., & de Jongh, H.H.J. (2016). The effect of polysaccharides on the ability of whey protein gels to either store or dissipate energy upon mechanical deformation. Food Hydrocolloids, 52, 707-720. https://doi.org/10.1016/j.foodhyd.2015.08.013
  26. Oliver, L., Scholten, E., & van Aken, G.A. (2015). Effect of fat hardness on large deformation rheology of emulsion-filled gels. Food Hydrocolloids, 43, 299-310. https://doi.org/10.1016/j.foodhyd.2014.05.031
  27. Razi, S.M., Motamedzadegan, A., Shahidi, A., & Rashidinejad, A. (2018). The effect of basil seed gum (BSG) on the rheological and physicochemical properties of heat-induced egg albumin gels. Food Hydrocolloids, 82, 268-277. https://doi.org/10.1016/j.foodhyd.2018.01.013
  28. Salahi, M.R., Razavi, S.M.A., & Mohebbi, M. (2022a). Physicochemical, rheological and structural properties of cold-set emulsion-filled gels based on whey protein isolate-basil seed gum mixed biopolymers. Food Biophysics, 17(4), 635-649. https://doi.org/10.1007/s11483-022-09751-w
  29. Salahi, M.R., Razavi, S.M.A., & Mohebbi, M. (2022b). Analyzing the effects of agar gum on the textural and rheological properties of cold-set whey protein isolate emulsion-filled gel. Research and Innovation in Food Science and Technology. https://doi.org/10.22101/JRIFST.2022.318480.1303
  30. Salahi, M.R., Razavi, S.M.A., & Mohebbi, M. (2024). Impact of Lallemantia royleana seed mucilage on the physicochemical, textural, rheological, and in-mouth breakdown behavior properties of cold-set whey protein isolate emulsion-filled gel. LWT, 191, 115691. https://doi.org/10.1016/j.lwt.2023.115691
  31. Sun, A., & Gunasekaran, S. (2009). Yield stress in foods: measurements and applications. International Journal of Food Properties, 12(1), 70-101. https://doi.org/10.1080/10942910802308502
  32. Urbonaite, V., De Jongh, H.H.J., Van der Linden, E., & Pouvreau, L. (2014). Origin of water loss from soy protein gels. Journal of Agricultural and Food Chemistry, 62(30), 7550-7558. https://doi.org/10.1021/jf501728t
  33. van den Berg, L., van Vliet, T., van der Linden, E., van Boekel, M.A.J.S., & van de Velde, F. (2007). Serum release: The hidden quality in fracturing composites. Food Hydrocolloids, 21(3), 420-432. https://doi.org/10.1016/j.foodhyd.2006.05.002
  34. Vilela,A.P., Cavallieri, Â.L.F., & Da Cunha, R.L. (2011). The influence of gelation rate on the physical properties/structure of salt-induced gels of soy protein isolate–gellan gum. Food Hydrocolloids, 25(7), 1710-1718. https://doi.org/10.1016/j.foodhyd.2011.03.012
  35. Xiong, W., Ren, C., Tian, M., Yang, X., Li, J., & Li, B. (2017). Complex coacervation of ovalbumin-carboxymethylcellulose assessed by isothermal titration calorimeter and rheology: Effect of ionic strength and charge density of polysaccharide. Food Hydrocolloids, 73, 41-50. https://doi.org/10.1016/j.foodhyd.2017.06.031
  36. Yang, Q., Wang, Y.-R., Li-Sha, Y.-J., & Chen, H.-Q. (2021). The effects of basil seed gum on the physicochemical and structural properties of arachin gel. Food Hydrocolloids, 110, 106189. https://doi.org/10.1016/j.foodhyd.2020.106189
  37. Yu, B., Zheng, L., Cui, B., Zhao, H., & Liu, P. (2020). The effects of acetylated distarch phosphate from tapioca starch on rheological properties and microstructure of acid-induced casein gel. International Journal of Biological Macromolecules, 159, 1132-1139. https://doi.org/10.1016/j.ijbiomac.2020.05.049
  38. Zhang, S., & Vardhanabhuti, B. (2014). Acid-induced gelation properties of heated whey protein−pectin soluble complex (Part II): Effect of charge density of pectin. Food Hydrocolloids, 39, 95-103. https://doi.org/10.1016/j.foodhyd.2013.12.020
  39. Zhao, H., Chen, J., Hemar, Y., & Cui, B. (2020). Improvement of the rheological and textural properties of calcium sulfate-induced soy protein isolate gels by the incorporation of different polysaccharides. Food Chemistry, 310, 125983. https://doi.org/10.1016/j.foodchem.2019.125983
CAPTCHA Image