با همکاری انجمن علوم و صنایع غذایی ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی علوم و صنایع غذایی، دانشگاه کشاورزی و منابع طبیعی رامین خوزستان.

2 گروه مهندسی مکانیک بیوسیستم، دانشگاه کشاورزی و منابع طبیعی رامین خوزستان

چکیده

در این پژوهش از تکنیک‏های ماشین بینایی به‌منظور بررسی اثر پیش‏فرآیند مایکروویو بر ویژگی‏های ظاهری دونات استفاده شد. آزمایش‌ها بر اساس روش سطح پاسخ با یک طرح باکس-بنکن طراحی شد. متغیرهای مستقل شامل توان مایکروویو (900-300 وات)، مدت‌زمان پیش‏ فرآیند مایکروویو (90-30 ثانیه) و مدت‌زمان سرخ کردن (130-70 ثانیه) بود. همچنین متغیرهای وابسته شامل ویژگی‏های بافت سطحی، شاخص‏های رنگ پوسته، ویژگی‏های ساختار مغز و پذیرش مصرف ‏کننده بود. نتایج نشان داد افزایش سطح توان مایکروویو، مدت‌زمان پیش‏فرآیند مایکروویو و مدت‌زمان سرخ کردن سبب افزایش قابل‌توجه زبری سطح نمونه‏ ها شد. نتایج همچنین نشان داد اثرات مثبت خطی همه متغیرهای مستقل و اثر منفی درجه دوم توان مایکروویو بر ویژگی‏های ساختار مغز دونات معنی‏دار بود. در مورد رنگ نمونه ‏ها، نتایج نشان داد که شاخص‏های L*و a* سطح نمونه‏ ها با افزایش سطح مدت‏زمان سرخ کردن به‌ترتیب به‌طور قابل‌توجهی کاهش و افزایش یافتند. نتایج حاصل از پذیرش مصرف‏کننده حاکی از تأثیر قابل‌توجه مدت‌زمان سرخ کردن بر نمرات حسی بود. همچنین نتایج حاصل از آنالیز همبستگی نشان‌دهنده وجود ارتباط خطی قوی بین ویژگی‏های ظاهری و خصوصیات حسی دونات بود.

کلیدواژه‌ها

عنوان مقاله [English]

Application of machine vision technology for visual assessment of microwave pre-treated donut

نویسندگان [English]

  • Mehran Nouri 1
  • Behzad Nasehi 1
  • Vahid Samavati 1
  • Saman Abdanan 2

1 Department of Food Science and Technology, Ramin Agriculture and Natural Resources University, Ahvaz, Iran.

2 Department of Mechanics of Biosystems Engineering, Ramin Agriculture and Natural Resources University, Ahvaz, Iran

چکیده [English]

Introduction: Fried foods such as donuts enjoyed worldwide for their taste, distinctive flavor, aroma and crunchy texture. There is, however, grave health concern over large fat content of fried foods (Melito and Farkas, 2013). There are several ways to lower fat content in deep-fried foods. One method is to reformulate the product by adding hydrophilic ingredients such as dietary fibers to reduce oil uptake during frying. Another method to reduce fat content is to partially cook the food using another heating method (Melito and Farkas, 2012). There is an increasing interest in microwaving foods for several reasons: it is faster than conventional methods, the energy consumption is often lower and foods cooked by microwaving maintain nutritional integrity.vIn foods, the appearance is a main criterion in making purchasing decisions. Appearance is used throughout the production –storage-marketing-utilization chain as the key means of judging the quality of individual units of product. The appearance of unities of products could be assessed by considering their color and surface texture. The use of computer-vision technology has quickly increased in the fields of quality inspection, classification and evaluation in processing a large number of food products (Brosnan and Sun, 2004). Therefore the aim of this study was to study the effects of microwave pre-treatment on sensory and appearance properties of donut.

Materials and methods: Response surface methodology and Box- Behnken design were applied to evaluate the effects of independent variable include microwave power (300-900 W), microwave time (30-90 s) and frying time (70-130 s) on sensory and appearance properties of donuts. Donuts were prepared according to the formulation by Melito and Farkas (2012) with some modifications. Ingredients used in donuts formulation were consisted of 100 g of wheat flour (9 g/100g), 52 g of water, 9.75 g of Shortening, 14 g of Egg, 14 g of water for yeast, 6.80 g of sugar, 6.80 g of nonfat dried milk powder, 3.25 g of active dried yeast, 1.70 g of Vanilla extract, 1.7 g of baking powder, 1.70 g of Salt, 1.3 g of Persian gum and 7.00 g of carrot pomace powder. The dough was cut into squares approximately 50 mm on each side. Then, the dough pieces were allowed to proof for 30 min at 27 ºC. The proofed samples were pre-treated using a microwave oven at different levels of microwave power and microwave time in accordance with the experimental design. Formerly, the per-treated donuts were deep-fat fried in a Moulinex deep-fat fryer (model F18-RA, France) filled with 1.5 L of vegetable frying oil (A mixture of Sunflower, palm, and soybean oil; Behshahr CO., Tehran, Iran) at different levels of frying time in accordance with the experimental design. The oil was preheated for 30 min prior to frying and replaced with fresh oil after every frying process. After frying, donuts were removed from the fryer and allowed to cool for 30 min on paper towels. They were then stored in coded sealed polyethylene bags.The evaluation of the crumb grain and crust color of donuts was performed using an image analysis system consisted of a Canon digital camera (model SX60 HS, Japan) and a personal computer with a Pentium(R) Dual-Core processor and Windows 7 Ultimate. The samples were photographed at a fixed distance of 30 cm from the crumb of samples, which were sitting inside a black box. The captured images were analyzed using the MATLAB R2014a software (The MathWorks Inc., Natick, Mass, USA).The CIE L*a*b* (or CIELAB) color model was used for determination of the crust color of donuts. Crumb grain features of the donut samples were obtained with described digital image analysis system. After imaging, each image was converted from RGB format to 8 bits (grey level) using the MATLAB software. In this format, an area of 3 × 3 cm2 was selected at the center of the captured image. After contrast enhancement of image, the image segmented using the Otsu algorithm, which produces highly uniform binary images (Otsu, 1979). Finally, crumb grain properties of donuts were studied by determination of cells densities and area of cells. Sensory evaluation of donut samples was carried out by assigning scores for crust appearance, crumb appearance, crust color, aroma, texture, taste and overall acceptance parameters based on a nine-point hedonic scale. (Stone et al., 2012).

Results and discussion: Results showed that roughness of the donuts surface increased significantly (p

کلیدواژه‌ها [English]

  • Appearance properties
  • Consumer acceptance
  • Donut
  • Machin vision
  • Microwave pre-treatment
نوری، م.، 1394، بررسی اثر پیش‌فرآیند مایکروویو بر ویژگی‏های فیزیکوشیمیایی، حسی و روند بیاتی دوناتِ حاوی پودر تفاله هویج و صمغ فارسی. پایان‌نامه کارشناسی ارشد. دانشگاه کشاورزی و منابع طبیعی رامین خوزستان.
Adedeji, A. A., Ngadi, M. O. & Raghavan, G. S. V., 2009, Kinetics of mass transfer in microwave precooked and deep-fat fried chicken nuggets. Journal of Food Engineering, 91: 146–153.
Aguilera, J. M. & Stanley, D. W., 1999, Microstructural principles of food processing and Engineering. Pages 1-65 in Barbosa Canovas, G. V. (ed.) A Chapman and Hall food science book. Gaithersburg, MA, USA: Washington State University, Aspen Publishers, Inc.
Balestra, F., Cocci, E., Pinnavaia, G., & Romani, S., 2011, Evaluation of antioxidant, rheological and sensorial properties of wheat flour dough and bread containing ginger powder. LWT-Food Science and Technology, 44(3): 700-705.
Brannan, R. G., Mah, E., Schott, M., Yuan, S., Casher, K. L., Myers, A., & Herrick, C., 2014, Influence of ingredients that reduce oil absorption during immersion frying of battered and breaded foods. European Journal of Lipid Science and Technology, 116(3): 240-254.
Brosnan, T., & Sun, D.-W., 2004, Improving quality inspection of food products by computer vision a review. Journal of Food Engineering, 61(1): 3-16.
Chandraratne, M. R., Samarasinghe, S., Kulasiri, D., & Bickerstaffe, R., 2006, Prediction of lamb tenderness using image surface texture features. Journal of Food Engineering, 77(3): 492-499.
Chandrasekaran, S., Ramanathan, S. & Basak, T., 2013. Microwave food processing-A review. Food Research International. 52: 243–261.
Chauhan, B., & Gupta, R., 2004, Application of statistical experimental design for optimization of alkaline protease production from Bacillus sp. RGR-14. Process Biochemistry, 39(12): 2115-2122.
Du, C.-J., & Sun, D.-W., 2004, Recent developments in the applications of image processing techniques for food quality evaluation. Trends in food science & technology, 15(5): 230-249.
ElMasry, G., Cubero, S., Molto, E., & Blasco, J., 2012, In-line sorting of irregular potatoes by using automated computer-based machine vision system. Journal of Food Engineering, 112(1): 60-68.
Fongaro, L., & Kvaal, K., 2013, Surface texture characterization of an Italian pasta by means of univariate and multivariate feature extraction from their texture images. Food Research International, 51(2): 693-705.
Girolami, A., Napolitano, F., Faraone, D., Di Bello, G., & Braghieri, A., 2014, Image analysis with the computer vision system and the consumer test in evaluating the appearance of Lucanian dry sausage, Meat science, 96(1): 610-616.
Hager, A.-S., & Arendt, E. K., 2013, Influence of hydroxypropylmethylcellulose (HPMC), xanthan gum and their combination on loaf specific volume, crumb hardness and crumb grain characteristics of gluten-free breads based on rice, maize, teff and buckwheat, Food Hydrocolloids, 32(1): 195-203.
Hirte, A., Primo-Martin, C., Meinders, M. B., & Hamer, R. J., 2012, Does crumb morphology affect water migration and crispness retention in crispy breads?. Journal of Cereal Science, 56(2): 289-295.
Homayoonfal, M., Khodaiyan, F., & Mousavi, M., 2015, Modelling and optimising of physicochemical features of walnut-oil beverage emulsions by implementation of response surface methodology: Effect of preparation conditions on emulsion stability. Food chemistry 174: 649-659.
Icoz, D., Sumnu, G. & Sahin, S., 2004, Color and texture development during microwave and conventional baking of breads. International Journal of Food Properties, 7(2): 201–213.
Jackman, P., & Sun, D.-W., 2013, Recent advances in image processing using image texture features for food quality assessment. Trends in food science & technology, 29(1): 35-43.
Jackman, P., Sun, D.-W., & Allen, P., 2009, Prediction of beef palatability from colour, marbling and surface texture features of longissimus dorsi. Journal of Food Engineering, 96(1): 151-165.
Kent, D., & Amos, A., 1967, Modern cereal chemistry: Food Trade Press, London.
Manzocco, L., Calligaris, S., Da Pieve, S., Marzona, S., & Nicoli, M. C., 2012, Effect of monoglyceride-oil–water gels on white bread properties. Food Research International, 49(2): 778-782.
Melito, H. S. & Farkas, B. E. 2013, Effect of infrared finishing process parameters on physical, mechanical, and sensory properties of par-fried, infrared-finished gluten-free donuts. Journal of food engineering. 117(3): 399-407.
Melito, H. S., & Farkas, B. E., 2012, Impact of Infrared Finishing on the Mechanical and Sensorial Properties of Wheat Donuts. Journal of food science, 77(9): 224-230.
Montgomery, D. C., 2013, Design and Analysis of Experiments (8 Ed.). New York: Wiley
Otsu, N., 1979, A threshold selection method from grey-level histograms. IEEE Transactions on Systems, Man and Cybernetics, 9(1): 62–66.
Ozkoc, S. O., Sumnu, G., Sahin, S. & Turabi, E., 2009, Investigation of physicochemical properties of breads baked in microwave and infrared–microwave combination ovens during storage. European Food Research and Technology, 228: 883-893.
Oztop, M. O., Sahin, S. & Sumnu, G., 2007, Optimization of microwave frying of potato slices by using Taguchi technique. Journal of Food Engineering, 79: 83-91.
Purhagen, J. K., Sjöö, M. E., & Eliasson, A.-C., 2011, Starch affecting anti-staling agents and their function in freestanding and pan-baked bread. Food Hydrocolloids, 25(7): 1656-1666.
Quevedo, R., Diaz, O., Caqueo, A., Ronceros, B., & Aguilera, J., 2009, Quantification of enzymatic browning kinetics in pear slices using non-homogenous L* color information from digital images. LWT-Food Science and Technology, 42(8): 1367-1373.
Samavati, V., Lorestani, M. & Joolazadeh, S., 2014, Identification and characterization of hydrocolloid from Cordia myxa leaf. International journal of biological macromolecules. 65: 215-221.
Sanchez-Pardo, M. E., Ortiz-Moreno, A., Mora-Escobedo, R., Chanona-Perez and Necoechea-Mondragon, H., 2008, Comparison of crumb microstructure from pound cakes baked in a microwave or conventional oven. LWT-Food Science and Technology, 41: 620-627.
Sanchez-Pardo, M., Ortiz-Moreno, A., Garcia-Zaragoza, F., Necoechea-Mondragon, H., & Chanona-Perez, J., 2012, Comparison of pound cake baked in a two cycle microwave-toaster oven and in conventional oven. LWT-Food Science and Technology, 46(1): 356-362.
Stone, H., Bleibaum, R., & Thomas, H. A., 2012, Sensory evaluation practices: Academic press.
Sumnu, G,. 2001, A review on microwave baking of foods. International Journal of Food Science and Technology, 36(2): 117-127.
Sumnu, G. & Sahin, S. 2005. The microwave processing of foods (Chapter 7). Pages 119-141 in Schubert, H. and Regier, M. (eds.) Baking using microwave processing. Cambridge, England: CRC Press.
Turabi, E., Sumnu, G. & Sahin, S. 2008. Optimization of baking of rice cakes in infraredemicrowave combination oven by response surface methodology. Food and Bioprocess Technology. 1: 64-73.
Turabi, E., Sumnu, G. & Sahin, S. 2010. Quantitative analysis of macro and micro-structure of gluten-free rice cakes containing different types of gums baked in different ovens. Food Hydrocolloids. 24: 755-762.
Ziobro, R., Witczak, T., Juszczak, L., & Korus, J, 2013, Supplementation of gluten-free bread with non-gluten proteins. Effect on dough rheological properties and bread characteristic. Food Hydrocolloids, 32(2): 213-220
CAPTCHA Image