با همکاری انجمن علوم و صنایع غذایی ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی زراعی و عمران روستایی، گروه مکانیک بیوسیستم، دانشگاه کشاورزی و منابع طبیعی رامین خوزستان.

2 دانشکده علوم دامی و صنایع غذایی، گروه صنایع غذایی، دانشگاه کشاورزی و منابع طبیعی رامین خوزستان.

چکیده

هدف از پژوهش حاضر تعیین بهترین ویژگی سطحی بافت (انتروپی، انرژی، همگنی، تباین، همبستگی و برتری) به‌منظور پیشگویی فاکتورهای کیفی آب مرکبات (pH، اسیدیته، مواد جامد محلول و اسکوربیک اسید) می‏باشد. بدین منظور آب مرکبات (نارنج، پرتقال، لیموترش و نارنگی) بلافاصله پس از فرآیند پاستوریزاسیون در دمای یخچال (4 درجه سانتی‌گراد) برای مدت 60 روز نگهداری گردید. در خلال انبارمانی بعداز اخذ تصویر از سطح آب مرکبات مقدار pH، ویتامین ث و مواد جامد محلول در روزهای 0، 20، 40 و60 اندازه گیری شدند. مطابق آنالیز تصویر تغییرات رنگ در طول فرآیند انبارمانی توسط سه کانال رنگی L*,a*, b* نشان داد که کانال رنگی L* تغییرات زوال در آب میوه ها را بهتر نشان می‏دهد. نتایج آنالیز آماری داده ها نشان داد که اسیدیته و اسکوربیک اسید در چهار نوع آب مرکبات بطور معنی داری (05/0 >P) طی مدت زمان نگهداری به ترتیب افزایش و کاهش یافتند. همچنین نتایج حاصل از آنالیز همبستگی نشان داد از بین ویژگی های استخراج شده از تصاویر، انرژی نسبت به دیگر ویژگی‏ها با ضریب همبستگی بالاتر توانایی پیشگویی اسیدیته، pH و آسکوبیک اسید را به خوبی دارد.

کلیدواژه‌ها

عنوان مقاله [English]

None-destructive investigation of the quality factors in citrus juice during storage using digital image processing

نویسندگان [English]

  • Saman Abdanan 1
  • Mehran Nouri 2
  • Maryam Soltani Kazemi 1
  • Somaye Amraei 1

1 Mechanics of Biosystems Engineering Department, Faculty of Agricultural Engineering and Rural Development, Ramin Agriculture and Natural Resources University of Khuzestan, Iran.

2 Department of Food Science, Faculty of Animal and Food Science, Ramin Agriculture and Natural Resources University of Khuzestan, Iran.

چکیده [English]

Introduction: Nutritional quality of food during storage has become increasingly an important problem. The loss of some nutrients such as ascorbic acid (vitamin C) might be a critical factor for the shelf life of some products as citrus juice concentrates, since vitamin C content of citrus juices undergoes destruction during storage (Plaza et al., 2011a). Ascorbic acid is an important component of our nutrition and used as additive in many foods because of its antioxidant capacity. Thus, it increases quality and technological properties of food as well as nutritional value (Larisch et al., 1998). However, ascorbic acid is an unstable compound and even under minor desirable conditions it decomposes easily. Degradation of ascorbic acid proceeds both aerobic and anaerobic pathways and depends upon many factors such as oxygen, heat, light, storage temperature and storage time. Oxidation of ascorbic acid occurs mainly during the processing of citrus juices, whereas, anaerobic degradation of ascorbic acid mainly appears during storage which is especially observed in thermally preserved citrus juices (Lee & Coates, 1999). It was reported that several decomposition reactive products occur via the degradation of vitamin C and these compounds may combine with amino acids, thus result in formation of brown pigments (Wibowo et al., 2015). In recent years, several nondestructive methods such as computer vision, spectroscopy, ultrasonic have been developed to objectively evaluate different agricultural materials (Abdanan Mehdizadeh et al., 2014; Wang and Paliwal, 2007). However, due to the physical properties of fruit, machine vision has not been discussed much in the literature (Fernanzed-Vazquez et al., 2011). One disadvantage of using spectroscopic methods is that these methods require expensive equipment and also carrying these instruments are difficult. On the contrary, the combining of a digital camera and its image processing software that replaces the traditional measuring instruments have been widely used to provide a cheaper and versatile form to measure some internal quality of many foods. Therefore, the goal of this research is to determine the best features of surface texture (entropy, homogeneity, contrast, correlation and prominence) in order to predict quality factors (pH, acidity, soluble solids and ascorbic acid) of citrus juice.

Materials and methods: Orange, sour lemon, sour orange and tangerine fruit were obtained from one of local marker in Ahvaz, Iran. All samples were washed and the juice was extracted using a Pars-Khazar rotary extractor. The citrus juice, (sour orange, orange, lemon and tangerine) immediately after pasteurization process, were kept at a temperature of refrigerators (4º C) for 60 days in darkness. After taking images of the citrus juice, pH, acidity, ascorbic acid and soluble solids were measured on days 0, 20, 40 and 60.
Physicochemical analysis:
The pH of samples was determined with a pH meter (Methrohm, 827 pH lab, Switzerland). The soluble solids content of concentrates was determined as o Bx using a refractometer (Atago Co, Ltd. Carnation, WA). Total titrable acidity was assessed by titration with sodium hydroxide (0.1 N) and expressed as % citric acid (Kimball, 1999). Ascorbic acid was determined using 2,6-dichlorophenolindophenol by visual titration (Kabasakalis, 2000).
Imaging and color analysis:
Samples were placed under the camera (Canon PowerShot SX60 HS, Japan) of a computer vision system at the distance of 300 mm inside a black box with the size of 100 ×100 ×100 cm3. The samples were illuminated using four fluorescent lamps at the angle of 45o in relation with the sample.
After taking images, color images were transformed to L*a*b* color space. The L* parameter (luminosity) is an attribute by which a surface emits more or less light and can take values between 0 (absolute black) to 100 (absolute white). The parameters a* and b* represent the chromaticity, where a* defines the red-green component (red for positive values and green for negative values) and the b* parameter defines the yellow-blue component (yellow for positive values and blue for negative values) (Quevedo et al., 2009a). Following color transformation, the well-known textural parameter called the Gray-Level Co-Occurrence Matrix (GLCM function) was applied to the images and six features through Eq. 1-6 were extracted (Table 1).

Results and discussion: Color changes during storage in three color channels L*,a*,b* showed that the variation of channel L* could illustrate deterioration of citrus juice better than other channels. In the Figure 1, a gallery of four selected images (taken at different times in the experiment) corresponding to one sour orange sample and their corresponding surface intensity (based on L* value) are showed.
The results of statistical analysis depicted that acidity and ascorbic acid, in four citrus juices, significantly (P

کلیدواژه‌ها [English]

  • Juice
  • Image processing
  • features of surface texture
  • quality parameters (pH
  • Acidity
  • SSC and ascorbic acid)
Abdanan Mehdizadeh S., Minaei, S., Hancock, N. H. & Karimi Torshizi M. A. 2014. An intelligent system for egg quality classification based on visible-infrared transmittance spectroscopy. Information Processing in Agriculture, 1, 105–114.
Al-Zubaidy, M. M., & Khalil, R. A. 2007. Kinetic and prediction studies of ascorbic acid degradation in normal and concentrate local lemon juice during storage. Food Chemistry, 101(1), 254-259.
Amiri, S., & Niakousari, M. 2006. Kinetics and shelf life stability of vitamin C in un-pasteurized sour orange juice ,Effect of storage condition and citric acid supplement. 17th international congress of chemical and process engineering, 27-31.
Ayhan, Z., Yeom, H. Y., Zhang, Q. H., & Min, D. B. 2001. Flavor, color, and vitamin C retention of PEF processed orange juice in different packaging materials. Journal of Agricultural and Food Chemistry, 49, 669–674.
Basset, O., Buquet, B., Aboielkaram, S., Delachartre, P., & Culioli, J. 2000. Application of texture image analysis for the classification of bovine meat. Food Chemistry, 69, 437–445.
Brosnan, T., & Sun, D.W. 2004. Improving quality inspection of food products by computer vision – a review. Journal of Food Engineering. 61: 3–16.
Burdurlu, H. S., Koca, N., & Karadeniz, F. 2006. Degradation of vitamin C in citrus juice concentrates during storage. Journal of Food Engineering, 74(2), 211-216.
Butz, P., Hofmann, C., & Tauscher, B. 2005. Recent developments in non-invasive techniques for fresh fruit and vegetable internal quality analysis. Journal of Food Science .70: 131–134.
Chandraratne, M. R., Samarasinghe, S., Kulasiri, D., & Bickerstaffe, R. 2006. Prediction of lamb tenderness using image surface texture features. Journal of Food Engineering, 77(3), 492-499.
Clydesdale, F. M. (1993). Color as a factor in food choice. Critical Reviews in Food Science & Nutrition, 33(1), 83-101.
Cortes, C., Esteve, M. J., & Frigola, A. 2008. Colour of orange juice treated by high intensity pulsed lectric fields during refrigerated storage and comparison with pasteurized juice. Food Control, 19, 151–158.
Cozzolino, D., Cynkar, W. U., Shah, N., & Smith, P. 2011. Multivariate data analysis applied to spectroscopy: Potential application to juice and fruit quality.Food Research International, 44(7), 1888-1896.
Du, C.J., & Sun, D.W. 2006. Learning techniques used in computer vision for foodquality evaluation: a review. Journal of Food Engineering. 72: 39–55.
Eskin, N.A.M. 1990. Biochemistry of food processing: Browning reactions in foods. In Biochemistry of foods (second ed., pp. 240–295). London: Academic Press.
FAO. 2010. Citrus fruit – fresh and processed, annual statistics. 2009. Commodities and Trade Division, FAO of the UN, Rome.
Fellers, P. J. 1988. Shelf life and quality of freshly squeezed, unpasteurized, polyethylene-bottled citrus juice. Journal of Food Science, 53(6), 1699–1702.
Fennema, O. 1977. Loss of vitamins in fresh and frozen foods. Food Technology, 31(12), 32–38.
Fernanzed Vazquez, R., Stinco, C. M., Melendez Martinez, A. J., Heredia, F. J., & Vicario, I. M. 2011. Visual and instrumentation evaluation of orange juice color: consumer’s preference study. Journal of sensory studies, 26(6), 436-444.
Fongaro, L., & Kvaal, K. 2013. Surface texture characterization of an Italian pasta by means of univariate and multivariate feature extraction from their texture images, Food Research International, 51(2), 693-705.
Gordon, L. R., & Samaniego-Esguerra, M. C. 1990. Effect of soluble solids and temperature on ascorbic acid degradation in lemon juice stored in glass bottles. Journal of Food Quality, 13, 361–374.
Guillard, V., Broyart, B., Bonazzi, C., Guilbert, S,. & Gontard, N. 2003. Evolution of moisture distribution during storage in composite food modeling and simulation. J. Food Sci. 68, 958-966.
Huelin, F. E. 1953. Studies on the anaerobic decomposition of ascorbic acid. Food Research, 18, 633–639.
Johnson, J. R., Braddock, R. J., & Chen, C. S. 1995. Kinetics of ascorbic acid loss and nonenzymatic browning in orange juice serum: Experimental rate constants. Journal of Food Science, 60(3), 502–505.
Kabasakalis, V., Siopidou, D., & Moshatou, E. 2000. Ascorbic acid content of commercial fruit juices and its rate ofloss upon storage. Food chemistry, 70(3), 325-328.
Kimball, D. 1999. Citrus processing Quality Control and Technology. New York: AVI Book,Van Nostrand Reinhold.
Krokida, M . V., Karathanos, and Z., Maroulis. 2000. Effect of osmotic dehydration on color and sorption characteristics of apple and banana. Drying Technology, 18(4-5): 937-950.
Laing, B. M., Schlueter, D. L., & Labuza, T. P. 1978. Degradation kinetics of ascorbic acid at high temperature and water activity. Journal of Food Science, 43(5), 1440–1443.
Larisch, B., Grob, U., & Pischetsrieder, M.1998. On the reaction of L -ascorbic acid with propylamine under various conditions: quantification of the main products by HPLC/DAD. Zeitschrift fur Lebensmittel-Untersuchung Und-Forschung A, 206, 333–337.
Lavin, J. G., & Lawless, H. T. (1998). Effects of color and odor on judgments of sweetness among children and adults. Food Quality and Preference, 9(4), 283-289.
Lee, H. S., & Coates, G. A. 1999. Vitamin C in frozen, fresh squeezed, unpasteurized, polyethylene-bottled orange juice: A storage study. Food Chemistry, 65, 165–168.
Lee, H. S., & Nagy, S. 1988. Relationship of sugar degradation to detrimental changes in citrus juice quality. Food Technology, 11, 91–97.
Maria, R.C., Yulissa, B., Asuncion, I., & Antonio, L. p. 2007. Quality and shelf life of orange juice aseptically packaged in PET bottles. Journal of Food Engineering, 79, 234-242.
McAllister, J. W. 1980. Methods of determining the quality of citrus juice. In S. Nagy, & J. A. Attaway (Eds.), Citrus nutrition and quality (pp. 291–317). Washington, DC: American Chemical Society.
Michelle, K. B., Katherine, Z., Effie Howe, Dimitria, G., Priscilla, P., Regine, S., & Cynthia, M. S. 2004. The effect of high pressure processing on the microbial, physical and chemical properties of Valencia and Navel orange juice. Innovative Food Science and Emerging Technologies, 5, 135-149.
Plaza, L., Crespo I., de Pascual Teresa, S., De Ancos, B., Sanchez Moreno, C., Muoz M., and Cano M.P. 2011a. Impact of minimal processing on orange bioactive compounds during refrigerated storage. Food Chemistry, 124, 646-51.
Plaza, L., Sanchez Moreno, C., De Ancos, B., Elez Martinez, P., Marin Belloso, O., and Cano M.P. 2011b. Carotenoid and flavanone content during refrigerated storage of orange juice processed by high-pressure, pulsed electric fields and low pasteurization. Food Science and Technology, 44, 834-839.
Quevedo, R., Diaz, O., Caqueo, A., Ronceros, B., & Aguilera, J. M. 2009a. Quantification of enzymatic browning kinetics in pear slices using non-homogenous L* color information from digital images. LWT - Food Science and Technology, 42(8), 1367-1373.
Quevedo, R., Jaramillo, M., Diaz, O., Pedreschi, F., & Aguilera, J. M. 2009b. Quantification of enzymatic browning in apple slices applying the fractal texture Fourier image. Journal of Food Engineering, 95(2), 285-290.
Quevedo, R., Valencia, E., Bastias, J. M., & Cardenas, S. 2014. Description of the enzymatic browning in avocado slice using GLCM image texture. In Image and Video Technology–PSIVT 2013 Workshops (pp. 93-101). Springer Berlin Heidelberg.
Rivas, A., Rodrigo, D., Martıinez, A., Barbosa-Canovas, G. V., & Rodrigo, M. 2006. Effect of PEF and heat pasteurization on the physical–chemical characteristics of blended orange and carrot juice. LWT - Food Science and Technology, 39 1163–1170.
Robertson, G. L., & Samaniego, C. M. L. 1986. Effect of initial dissolved oxygen levels on the degradation of ascorbic acid and the browning of lemon juice during storage. Journal of Food Science, 51(1), 184–187.
Roussos, P. A. 2011. Phytochemicals and antioxidant capacity of orange (Citrus sinensis (l) Osbeck cv. Salustiana) juice produced under organic and integrated farming system in Greece. Scientia Horticulturae, 129(2), 253-258.
Sanchez-Moreno, C., Plaza, L., De Ancos, B., & Pilar Cano, M. 2003. Vitamin C, provitamin a carotenoids, and other carotenoids in high-pressurized orange juice during refrigerated storage. Journal of Agricultural and Food Chemistry, 51, 647-653.
Shao, Y., & He, Y. 2007. Nondestructive measurement of the internal quality of bayberryjuice using Vis/NIR spectroscopy. Journal of Food Engineering, 79(3), 1015-1019.
Shepherd R., & Sparks P. 1994. Modelling food choice. In: Macfie H.J.H., Thomson D.M.H., (eds), Measurements of food preference. London: Blackie Academic and Professional. pp. 202–223.
Singh, R.P., & Heldman, D.R. 1976. Simulaton of liquid food quality during storages. Transactions of the ASAE. 19(1), 178-184.
Solomon, O., Svanberg, U., & Sahlstrom, A. 1995. Effect of oxygen and fluorescent light on the quality of orange juice during storage at 8 C. Food Chemistry, 53, 363–368.
Tiwari, B. K., O Donnell, C. P., Muthukumarappan, K., & Cullen, P. J. 2009. Effect of sonication on orange juice quality parameters during storage. International Journal of Food Science and Technology, 44, 586–595.
Vanamala, J., Reddivari, L., Sun, Yoo, K., Pike, L.M., & Patil, B.S. 2006. Variation in the content of bioactive flavonoids in different brands of orange and grapefruit juices. Journal of Food Composition and Analysis, 19, 157–166.
Wang, W., & Paliwal, J. 2007. Near-infrared spectroscopy and imaging in food quality and safety. Sensing and Instrumentation for Food Quality and Safety, 1, 193-207.
Wibowo, S., Vervoort, L., Tomic, J., Santiago, J. S., Lemmens, L., Panozzo, A., Grauwet, T., Hendrickx, M., & Van Loey. 2015. Colour and carotenoid changes of pasteurised orange juice duringStorage.Food Chemistry. 171: 330–340.
Zheng, C., & Sun, D.W. 2008. Object measurement methods. In: Da-Wen, S. (Ed.), Computer Vision Technology for Food Quality Evaluation. Academic Press, Amsterdam, pp. 57–7.
Zheng, H., Jiang, L., Lou, H., Hu, Y., Kong, X., & Lu, H. 2010. Application of artificial neural network (ANN) and partial least-squares regression (PLSR) to predict the changes of anthocyanins, ascorbic acid, Total phenols, flavonoids, and antioxidant activity during storage of red bayberry juice based on fractal analysis and red, green, and blue (RGB) intensity values. Journal of agricultural and food chemistry, 59(2), 592-600
CAPTCHA Image