با همکاری انجمن علوم و صنایع غذایی ایران

نوع مقاله : مقاله مروری لاتین

نویسندگان

1 گروه مهندسی بیوسیستم، دانشگاه تبریز، تبریز، ایران

2 گروه مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه بناب، بناب، ایران

چکیده

گوشت منبع مهمی از مواد مغذی مهم است و نقش حیاتی در رژیم غذایی انسان دارد. عدم نظارت بر کیفیت و ایمنی گوشت می‌تواند منجر به تهدید سلامتی شود. بررسی ایمنی گوشت با روش‌های شیمیایی پرهزینه و زمان‌بر است، بدون اینکه امکان نظارت به‌صورت زمان واقعی وجود داشته باشد. بنابراین، امروزه ارزیابی کیفیت گوشت با استفاده از تکنیک‌های طیفی مانند تصویربرداری طیفی و طیف‌سنجی، روش‌هایی امیدوارکننده محسوب می‌شوند و این تکنیک‌ها اخیراً دستخوش پیشرفت‌های سریعی شده و توجه عمومی را به خود جلب کرده است. بنابراین، هدف مقاله مروری حاضر ارائه مروری بر آخرین پیشرفت‌ها در روش‌های طیفی برای ارزیابی ایمنی گوشت چرخ‌شده است. اصول اولیه کار، فرآیند تحلیل و کاربردهای این تکنیک‌ها شرح داده شده است. محققان با بررسی امکان استفاده عملی از فناوری‌های تشخیص طیفی در ارزیابی ایمنی گوشت، چالش‌های موجود و چشم‌انداز تحقیقاتی آتی را مورد بحث قرار دادند. در ادامه، جدیدترین پیشرفت‌ها در کاربرد هوش مصنوعی همراه با تکنیک‌های ذکر شده نیز مورد بحث قرار گرفت.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Detection of Adulteration of Ground Meat by Spectral-based Techniques and Artificial Intelligence (2020-2024)

نویسندگان [English]

  • Amir Kazemi 1
  • Asghar Mahmoudi 1
  • Mostafa Khojasteh Najand 2

1 Department of Biosystems Engineering, University of Tabriz, Tabriz, Iran

2 Department of Mechanical Engineering, University of Bonab, Bonab, Iran

چکیده [English]

Meat is a significant source of important nutrients and has a vital role in the human diet. Lack of monitoring of the quality and safety of meat can result in posing health threats. Determining safety through chemical methods is costly and time-consuming, without the ability to monitor in real-time. Therefore, nowadays assessing the quality of meat by applying spectral techniques such as spectroscopic and spectral imaging, considered as promising tools and these strategies have recently undergone swift advancements and garnered heightened public attention. Therefore, the purpose of the present review paper is to give an overview of the latest advancements in spectral methods for assessing ground meat safety. The basic working principles, fundamental settings, analysis process, and applications of these techniques are described. By investigating the practical utilization possibilities of spectral detection technologies in the evaluation of meat safety, researchers discussed the present challenges and upcoming research prospects. Furthermore, the newest advances in the application of artificial intelligence accompanied by the mentioned techniques were also discussed.

کلیدواژه‌ها [English]

  • Adulteration
  • Machine learning
  • Minced meat
  • NIR spectroscopy
  • Spectral imaging

©2025 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0).

  1. Abidin, S.A.S.Z., Rosli, S.H., Bujang, A., Nordin, R., & Nizar, N.N.A. (2021). Fourier Transform Infrared (FTIR) Spectroscopy for Determination of Offal in Beef Patties. Paper presented at the 2021 IEEE 12th Control and System Graduate Research Colloquium (ICSGRC).
  2. Achata, E.M., Mousa, M.A., Al-Qurashi, A.D., Ibrahim, O.H., Abo-Elyousr, K.A., Aal, A.M.A., & Kamruzzaman, M. (2023). Multivariate optimization of hyperspectral imaging for adulteration detection of ground beef: Towards the development of generic algorithms to predict adulterated ground beef and for digital sorting. Food Control, 109907. https://doi.org/10.1016/j.foodcont.2023.109907
  3. Alaiz-Rodriguez, R., & Parnell, A.C. (2020). A machine learning approach for lamb meat quality assessment using FTIR spectra. IEEE Access, 8, 52385-52394. https://doi.org/1109/ACCESS.2020.2974623
  4. Bai, Z., Gu, J., Zhu, R., Yao, X., Kang, L., & Ge, J. (2022). Discrimination of minced mutton adulteration based on sized-adaptive online NIRS information and 2D conventional neural network. Foods, 11(19), 2977. https://doi.org/10.3390/foods11192977
  5. Banerjee, A. (2014). Fourier Transform Infrared Spectroscopy-A Review.
  6. Barbin, D.F., Badaro, A.T., Honorato, D.C., Ida, E.Y., & Shimokomaki, M. (2020). Identification of turkey meat and processed products using near infrared spectroscopy. Food Control, 107, 106816. https://doi.org/1016/j.foodcont.2019.106816
  7. Basati, Z., Jamshidi, B., Rasekh, M., & Abbaspour-Gilandeh, Y. (2018). Detection of sunn pest-damaged wheat samples using visible/near-infrared spectroscopy based on pattern recognition. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 203, 308-314. https://doi.org/10.1016/j.saa.2018.05.123
  8. Bauer, A., Scheier, R., Eberle, T., & Schmidt, H. (2016). Assessment of tenderness of aged bovine gluteus medius muscles using Raman spectroscopy. Meat Science, 115, 27-33. https://doi.org/10.1016/j.meatsci.2015.12.020
  9. Bi, Y., Yuan, K., Xiao, W., Wu, J., Shi, C., Xia, J., & Zhou, G. (2016). A local pre-processing method for near-infrared spectra, combined with spectral segmentation and standard normal variate transformation. Analytica Chimica Acta, 909, 30-40. https://doi.org/10.1016/j.aca.2016.01.010
  10. Blanco, M., & Villarroya, I. (2002). NIR spectroscopy: a rapid-response analytical tool. TrAC Trends in Analytical Chemistry, 21(4), 240-250. https://doi.org/10.1016/S0165-9936(02)00404-1
  11. Boyacı, I.H., Temiz, H.T., Uysal, R.S., Velioğlu, H.M., Yadegari, R.J., & Rishkan, M.M. (2014). A novel method for discrimination of beef and horsemeat using Raman spectroscopy. Food Chemistry, 148, 37-41. https://doi.org/10.1016/j.foodchem.2013.10.006
  12. Brereton, R.G., Jansen, J., Lopes, J., Marini, F., Pomerantsev, A., Rodionova, O., Tauler, R. (2018). Chemometrics in analytical chemistry—part II: modeling, validation, and applications. Analytical and Bioanalytical Chemistry, 410, 6691-6704. https://doi.org/10.1007/s00216-018-1283-4
  13. Butler, H.J., Ashton, L., Bird, B., Cinque, G., Curtis, K., Dorney, J., Martin-Hirsch, P.L. (2016). Using Raman spectroscopy to characterize biological materials. Nature Protocols, 11(4), 664-687.
  14. CANDOĞAN, K., DENİZ, E., ALTUNTAŞ, E.G., Naşit, İ., & Demiralp, D.Ö. (2020). Detection of pork, horse or donkey meat adulteration in beef-based formulations by Fourier transform infrared spectroscopy. Gıda, 45(2), 369-379. https://doi.org/10.15237/gida.GD19146
  15. Cen, H., & He, Y. (2007). Theory and application of near infrared reflectance spectroscopy in determination of food quality. Trends in Food Science & Technology, 18(2), 72-83. https://doi.org/10.1016/j.tifs.2006.09.003
  16. Chai, J., Zhang, K., Xue, Y., Liu, W., Chen, T., Lu, Y., & Zhao, G. (2020). Review of MEMS based Fourier transform spectrometers. Micromachines, 11(2), 214. https://doi.org/10.3390/mi11020214
  17. Cheng, J.-H., Nicolai, B., & Sun, D.-W. (2017). Hyperspectral imaging with multivariate analysis for technological parameters prediction and classification of muscle foods: A review. Meat Science, 123, 182-191. https://doi.org/10.1016/j.meatsci.2016.09.017
  18. Chophi, R., Sharma, S., Jossan, J.K., & Singh, R. (2021). Rapid and non-destructive analysis of eye-cosmetics using ATR-FTIR spectroscopy and chemometrics. Forensic Science International, 329, 111062. https://doi.org/10.1016/j.forsciint.2021.111062
  19. Cruz-Tirado, J.P., Vieira, M.S.D.S., Correa, O.O.V., Delgado, D.R., Angulo-Tisoc, J.M., Barbin, D.F., & Siche, R. (2024). Detection of adulteration of Alpaca (Vicugna pacos) meat using a portable NIR spectrometer and NIR-hyperspectral imaging. Journal of Food Composition and Analysis, 126, 105901. https://doi.org/10.1016/j.jfca.2023.105901
  20. Dashti, A., Müller-Maatsch, J., Roetgerink, E., Wijtten, M., Weesepoel, Y., Parastar, H., & Yazdanpanah, H. (2023). Comparison of a portable Vis-NIR hyperspectral imaging and a snapscan SWIR hyperspectral imaging for evaluation of meat authenticity. Food Chemistry: X, 18, 100667. https://doi.org/10.1016/j.fochx.2023.100667
  21. Dashti, A., Müller-Maatsch, J., Weesepoel, Y., Parastar, H., Kobarfard, F., Daraei, B., Yazdanpanah, H. (2021). The feasibility of two handheld spectrometers for meat speciation combined with chemometric methods and its application for halal certification. Foods, 11(1), 71. https://doi.org/10.3390/foods11010071
  22. Dashti, A., Weesepoel, Y., Müller-Maatsch, J., Parastar, H., Kobarfard, F., Daraei, B., & Yazdanpanah, H. (2022). Assessment of meat authenticity using portable Fourier transform infrared spectroscopy combined with multivariate classification techniques. Microchemical Journal, 181, 107735. https://doi.org/10.1016/j.microc.2022.107735
  23. De Girolamo, A., Cervellieri, S., Mancini, E., Pascale, M., Logrieco, A.F., & Lippolis, V. (2020). Rapid authentication of 100% italian durum wheat pasta by FT-NIR spectroscopy combined with chemometric tools. Foods, 9(11), 1551. https://doi.org/10.3390/foods9111551
  24. Deniz, E., Güneş Altuntaş, E., Ayhan, B., İğci, N., Özel Demiralp, D., & Candoğan, K. (2018). Differentiation of beef mixtures adulterated with chicken or turkey meat using FTIR spectroscopy. Journal of Food Processing and Preservation, 42(10), e13767. https://doi.org/10.1111/jfpp.13767
  25. Dixit, Y., Casado‐Gavalda, M.P., Cama‐Moncunill, R., Cama‐Moncunill, X., Markiewicz‐Keszycka, M., Cullen, P., & Sullivan, C. (2017). Developments and challenges in online NIR spectroscopy for meat processing. Comprehensive Reviews in Food Science and Food Safety, 16(6), 1172-1187. https://doi.org/10.1111/1541-4337.12295
  26. Edwards, K., Manley, M., Hoffman, L.C., & Williams, P.J. (2021). Non-destructive spectroscopic and imaging techniques for the detection of processed meat fraud. Foods, 10(2), 448. https://doi.org/10.3390/foods10020448
  27. ElMasry, G., & Sun, D.-W. (2010). Principles of hyperspectral imaging technology Hyperspectral imaging for food quality analysis and control (pp. 3-43): Elsevier. https://doi.org/10.1016/B978-0-12-374753-2.10001-2
  28. ElMasry, G., Sun, D.-W., & Allen, P. (2012). Near-infrared hyperspectral imaging for predicting colour, pH and tenderness of fresh beef. Journal of Food Engineering, 110(1), 127-140. https://doi.org/10.1016/j.jfoodeng.2011.11.028
  29. Gemperline, P. (2006). Practical guide to chemometrics: CRC press. https://doi.org/10.1201/9781420018301
  30. Green, R.O., Eastwood, M.L., Sarture, C.M., Chrien, T.G., Aronsson, M., Chippendale, B.J., & Solis, M. (1998). Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS). Remote Sensing of Environment, 65(3), 227-248. https://doi.org/10.1016/S0034-4257(98)00064-9
  31. Guo, B., Zhao, J., Weng, S., Yin, X., & Tang, P. (2020). Rapid determination of minced beef adulteration using hyperspectral reflectance spectroscopy and multivariate methods. Paper presented at the IOP Conference Series: Earth and Environmental Science. https://doi.org/1088/1755-1315/428/1/012049
  32. Guo, Y., Ni, Y., & Kokot, S. (2016). Evaluation of chemical components and properties of the jujube fruit using near infrared spectroscopy and chemometrics. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 153, 79-86. https://doi.org/10.1016/j.saa.2015.08.006
  33. Hemmateenejad, B., Akhond, M., & Samari, F. (2007). A comparative study between PCR and PLS in simultaneous spectrophotometric determination of diphenylamine, aniline, and phenol: Effect of wavelength selection. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 67(3-4), 958-965. https://doi.org/10.1016/j.saa.2006.09.014
  34. Hoffman, L., Ingle, P., Khole, A.H., Zhang, S., Yang, Z., Beya, M., & Cozzolino, D. (2023). Discrimination of lamb (Ovis aries), emu (Dromaius novaehollandiae), camel (Camelus dromedarius) and beef (Bos taurus) binary mixtures using a portable near infrared instrument combined with chemometrics. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 294, 122506. https://doi.org/10.1016/j.saa.2023.122506
  35. Hong, T., Yin, J.-Y., Nie, S.-P., & Xie, M.-Y. (2021). Applications of infrared spectroscopy in polysaccharide structural analysis: Progress, challenge and perspective. Food Chemistry: X, 12, 100168. https://doi.org/10.1016/j.fochx.2021.100168
  36. Hong, Y., Chen, Y., Yu, L., Liu, Y., Liu, Y., Zhang, Y., & Cheng, H. (2018). Combining fractional order derivative and spectral variable selection for organic matter estimation of homogeneous soil samples by VIS–NIR spectroscopy. Remote Sensing, 10(3), 479. https://doi.org/3390/rs10030479
  37. Hu, W., Tang, R., Li, C., Zhou, T., Chen, J., & Chen, K. (2021). Fractional order modeling and recognition of nitrogen content level of rubber tree foliage. Journal of Near Infrared Spectroscopy, 29(1), 42-52. https://doi.org/10.1177/0967033520966693
  38. Ignat, T., De Falco, N., Berger-Tal, R., Rachmilevitch, S., & Karnieli, A. (2021). A novel approach for long-term spectral monitoring of desert shrubs affected by an oil spill. Environmental Pollution, 289, 117788. https://doi.org/10.1016/j.envpol.2021.117788
  39. Jiang, H., Cheng, F., & Shi, M. (2020). Rapid identification and visualization of jowl meat adulteration in pork using hyperspectral imaging. Foods, 9(2), 154. https://doi.org/10.3390/foods9020154
  40. Jiang, H., Jiang, X., Ru, Y., Chen, Q., Wang, J., Xu, L., & Zhou, H. (2022). Detection and visualization of soybean protein powder in ground beef using visible and near-infrared hyperspectral imaging. Infrared Physics & Technology, 127, 104401. https://doi.org/10.1016/j.infrared.2022.104401
  41. Jiang, H., Jiang, X., Ru, Y., Wang, J., Xu, L., & Zhou, H. (2020). Application of hyperspectral imaging for detecting and visualizing leaf lard adulteration in minced pork. Infrared Physics & Technology, 110, 103467. https://doi.org/10.1016/j.infrared.2020.103467
  42. Jiang, H., Yang, Y., & Shi, M. (2021). Chemometrics in tandem with hyperspectral imaging for detecting authentication of raw and cooked mutton rolls. Foods, 10(9), 2127. https://doi.org/10.3390/foods10092127
  43. Jing-yuan, Z., Jun-qin, Z., Mei, S., Xing-hai, C., & Ye-lin, L. (2022). Visualization of lamb adulteration based on hyperspectral imaging for non-destructive quantitative detection. Food and Machinery, 38(10), 61-68. https://doi.org/10.13652/j.spjx.1003.5788.2022.90174
  44. Kamruzzaman, M., Makino, Y., & Oshita, S. (2016). Rapid and non-destructive detection of chicken adulteration in minced beef using visible near-infrared hyperspectral imaging and machine learning. Journal of Food Engineering, 170, 8-15. https://doi.org/10.1016/j.jfoodeng.2015.08.023
  45. Kazemi, A., Mahmoudi, A., Veladi, H., & Javanmard, A. (2022). Detection of chicken and fat adulteration in minced lamb meat by VIS/NIR spectroscopy and chemometrics methods. International Journal of Food Engineering, 18(7), 525-535. https://doi.org/10.1515/ijfe-2021-0333
  46. Kazemi, A., Mahmoudi, A., Veladi, H., Javanmard, A., & Khojastehnazhand, M. (2022). Rapid identification and quantification of intramuscular fat adulteration in lamb meat with VIS–NIR spectroscopy and chemometrics methods. Journal of Food Measurement and Characterization, 16(3), 2400-2410. https://doi.org/10.1007/s11694-022-01352-y
  47. Keshavarzi, Z., Barzegari Banadkoki, S., Faizi, M., Zolghadri, Y., & Shirazi, F. H. (2020). Comparison of transmission FTIR and ATR spectra for discrimination between beef and chicken meat and quantification of chicken in beef meat mixture using ATR-FTIR combined with chemometrics. Journal of food science and technology, 57, 1430-1438. https://doi.org/1007/s13197-019-04178-7
  48. Khaled, A. Y., Parrish, C. A., & Adedeji, A. (2021). Emerging nondestructive approaches for meat quality and safety evaluation—A review. Comprehensive Reviews in Food Science and Food Safety, 20(4), 3438-3463. https://doi.org/1111/1541-4337.12781
  49. Leng, T., Li, F., Xiong, L., Xiong, Q., Zhu, M., & Chen, Y. (2020). Quantitative detection of binary and ternary adulteration of minced beef meat with pork and duck meat by NIR combined with chemometrics. Food Control, 113, 107203. https://doi.org/10.1016/j.foodcont.2020.107203
  50. Li, Z., Wang, Q., Lv, J., Ma, Z., & Yang, L. (2015). Improved quantitative analysis of spectra using a new method of obtaining derivative spectra based on a singular perturbation technique. Applied Spectroscopy, 69(6), 721-732. https://doi.org/1366/14-07642
  51. López-Maestresalas, A., Insausti, K., Jarén, C., Pérez-Roncal, C., Urrutia, O., Beriain, M.J., & Arazuri, S. (2019). Detection of minced lamb and beef fraud using NIR spectroscopy. Food Control, 98, 465-473. https://doi.org/10.1016/j.foodcont.2018.12.003
  52. Mabood, F., Boqué, R., Alkindi, A.Y., Al-Harrasi, A., Al Amri, I.S., Boukra, S., Naureen, Z. (2020). Fast detection and quantification of pork meat in other meats by reflectance FT-NIR spectroscopy and multivariate analysis. Meat Science, 163, 108084. https://doi.org/10.1016/j.meatsci.2020.108084
  53. Meza Ramirez, C.A., Greenop, M., Ashton, L., & Rehman, I.U. (2021). Applications of machine learning in spectroscopy. Applied Spectroscopy Reviews, 56(8-10), 733-763. https://doi.org/10.1080/05704928.2020.1859525
  54. Miller, M. F., Carr, M., Ramsey, C., Crockett, K., & Hoover, L. (2001). Consumer thresholds for establishing the value of beef tenderness. Journal of Animal Science, 79(12), 3062-3068. https://doi.org/2527/2001.79123062x
  55. Mishra, P., Passos, D., Marini, F., Xu, J., Amigo, J.M., Gowen, A.A., Rutledge, D.N. (2022). Deep learning for near-infrared spectral data modelling: Hypes and benefits. TrAC Trends in Analytical Chemistry, 116804. https://doi.org/10.1016/j.trac.2022.116804
  56. Næs, T., Isaksson, T., Fearn, T., & Davies, T. (2002). A user-friendly guide to multivariate calibration and classification (Vol. 6): NIR Chichester. https://doi.org/10.1002/cem.815
  57. Oliveri, P., López, M.I., Casolino, M.C., Ruisánchez, I., Callao, M.P., Medini, L., & Lanteri, S. (2014). Partial least squares density modeling (PLS-DM)–A new class-modeling strategy applied to the authentication of olives in brine by near-infrared spectroscopy. Analytica Chimica acta, 851, 30-36. https://doi.org/10.1016/j.aca.2014.09.013
  58. Pchelkina, V.A., Chernukha, IM., Fedulova, L.V., & Ilyin, N.A. (2022). Raman spectroscopic techniques for meat analysis: A review. Теория и практика переработки мяса, 7(2), 97-111. https://doi.org/10.21323/2414-438X-2022-7-2-97-111
  59. Premanandh, J. (2013). Horse meat scandal–A wake-up call for regulatory authorities. Food Control, 34(2), 568-569. https://doi.org/10.1016/j.foodcont.2013.05.033
  60. Rabatel, G., Marini, F., Walczak, B., & Roger, J.M. (2020). VSN: Variable sorting for normalization. Journal of Chemometrics, 34(2), e3164. https://doi.org/10.1002/cem.3164
  61. Rady, A., & Adedeji, A.A. (2020). Application of hyperspectral imaging and machine learning methods to detect and quantify adulterants in minced meats. Food Analytical Methods, 13, 970-981. https://doi.org/10.1007/s12161-020-01719-1
  62. Reinhard, E., Heidrich, W., Debevec, P., Pattanaik, S., Ward, G., & Myszkowski, K. (2010). High dynamic range imaging: acquisition, display, and image-based lighting: Morgan Kaufmann.
  63. Rinnan, Å., Van Den Berg, F., & Engelsen, S.B. (2009). Review of the most common pre-processing techniques for near-infrared spectra. TrAC Trends in Analytical Chemistry, 28(10), 1201-1222. https://doi.org/10.1016/j.trac.2009.07.007
  64. Robert, C., Fraser-Miller, S.J., Jessep, W.T., Bain, W.E., Hicks, T.M., Ward, J.F., Gordon, K.C. (2021). Rapid discrimination of intact beef, venison and lamb meat using Raman spectroscopy. Food Chemistry, 343, 128441. https://doi.org/10.1016/j.foodchem.2020.128441
  65. Saleem, M., Amin, A., & Irfan, M. (2021). Raman spectroscopy based characterization of cow, goat and buffalo fats. Journal of food science and technology, 58, 234-243. https://doi.org/1007/s13197-020-04535-x
  66. Shao, X., Cui, X., Wang, M., & Cai, W. (2019). High order derivative to investigate the complexity of the near infrared spectra of aqueous solutions. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 213, 83-89. https://doi.org/10.1016/j.saa.2019.01.059
  67. Shawky, E., El-Khair, R.M.., & Selim, D.A. (2020). NIR spectroscopy-multivariate analysis for rapid authentication, detection and quantification of common plant adulterants in saffron (Crocus sativus) stigmas. Lwt, 122, 109032. https://doi.org/10.1016/j.lwt.2020.109032
  68. Siddiqui, M.A., Khir, M.H.M., Witjaksono, G., Ghumman, A.S.M., Junaid, M., Magsi, S.A., & Saboor, A. (2021). Multivariate analysis coupled with M-SVM classification for lard adulteration detection in meat mixtures of beef, lamb, and chicken using FTIR spectroscopy. Foods, 10(10), 2405. https://doi.org/3390/foods10102405
  69. Silva, L.C., Folli, G.S., Santos, LP., Barros, I.H., Oliveira, B.G., Borghi, F.T., & Romao, W. (2020). Quantification of beef, pork, and chicken in ground meat using a portable NIR spectrometer. Vibrational Spectroscopy, 111, 103158. https://doi.org/10.1016/j.vibspec.2020.103158
  70. Stark, E., Luchter, K., & Margoshes, M. (1986). Near-infrared analysis (NIRA): A technology for quantitative and qualitative analysis. Applied Spectroscopy Reviews, 22(4), 335-399.
  71. Stuart, B.H. (2004). Infrared spectroscopy: fundamentals and applications: John Wiley & Sons.
  72. Totaro, M.P., Squeo, G., De Angelis, D., Pasqualone, A., Caponio, F., & Summo, C. (2023). Application of NIR spectroscopy coupled with DD-SIMCA class modelling for the authentication of pork meat. Journal of Food Composition and Analysis, 118, 105211. https://doi.org/10.1016/j.jfca.2023.105211
  73. Wang, H.-P., Chen, P., Dai, J.-W., Liu, D., Li, J.-Y., Xu, Y.-P., & Chu, X.-L. (2022). Recent advances of chemometric calibration methods in modern spectroscopy: Algorithms, strategy, and related issues. TrAC Trends in Analytical Chemistry, 153, 116648. https://doi.org/10.1016/j.trac.2022.116648
  74. Wang, K., Bian, X., Tan, X., Wang, H., & Li, Y. (2021). A new ensemble modeling method for multivariate calibration of near infrared spectra. Analytical Methods, 13(11), 1374-1380. https://doi.org/1039/D1AY00017A
  75. Wang, L., Liang, J., Li, F., Guo, T., Shi, Y., Li, F., & Xu, H. (2024). Deep learning based on the Vis-NIR two-dimensional spectroscopy for adulteration identification of beef and mutton. Journal of Food Composition and Analysis, 126, 105890. https://doi.org/10.1016/j.jfca.2023.105890
  76. Weng, S., Guo, B., Tang, P., Yin, X., Pan, F., Zhao, J., & Zhang, D. (2020). Rapid detection of adulteration of minced beef using Vis/NIR reflectance spectroscopy with multivariate methods. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 230, 118005. https://doi.org/10.1016/j.saa.2019.118005
  77. Wold, S., & Sjöström, M. (1977). SIMCA: a method for analyzing chemical data in terms of similarity and analogy: ACS Publications. https://doi.org/10.1021/bk-1977-0052.ch012
  78. Xiong, Z., Sun, D.-W., Pu, H., Gao, W., & Dai, Q. (2017). Applications of emerging imaging techniques for meat quality and safety detection and evaluation: A review. Critical Reviews in Food Science and Nutrition, 57(4), 755-768. https://doi.org/1080/10408398.2014.954282
  79. Xu, W., Xia, J., Min, S., & Xiong, Y. (2022). Fourier transform infrared spectroscopy and chemometrics for the discrimination of animal fur types. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 274, 121034. https://doi.org/10.1016/j.saa.2022.121034
  80. Yang, F., Sun, J., Cheng, J., Fu, L., Wang, S., & Xu, M. (2023). Detection of starch in minced chicken meat based on hyperspectral imaging technique and transfer learning. Journal of Food Process Engineering, 46(4), e14304. https://doi.org/10.1111/jfpe.14304
  81. Yao, Z., Su, H., Yao, J., & Huang, X. (2021). Yield-adjusted operation for convolution filter denoising. Analytical Chemistry, 93(49), 16489-16503. https://doi.org/10.1021/acs.analchem.1c03606
  82. Zahra, A., Qureshi, R., Sajjad, M., Sadak, F., Nawaz, M., Khan, H.A., & Uzair, M. (2023). Current advances in imaging spectroscopy and its state-of-the-art applications. Expert Systems with Applications, 122172. https://doi.org/10.1016/j.eswa.2023.122172
  83. Zhang, W., Kasun, L.C., Wang, Q.J., Zheng, Y., & Lin, Z. (2022). A review of machine learning for near-infrared spectroscopy. Sensors, 22(24), 9764. https://doi.org/10.3390/s22249764
  84. Zhang, W., Ma, J., & Sun, D.-W. (2021). Raman spectroscopic techniques for detecting structure and quality of frozen foods: principles and applications. Critical Reviews in Food Science and Nutrition, 61(16), 2623-2639. https://doi.org/1080/10408398.2020.1828814
  85. Zhao, Z., Yu, H., Zhang, S., Du, Y., Sheng, Z., Chu, Y., & Deng, L. (2020). Visualization accuracy improvement of spectral quantitative analysis for meat adulteration using Gaussian distribution of regression coefficients in hyperspectral imaging. Optik, 212, 164737. https://doi.org/10.1016/j.ijleo.2020.164737
  86. Zheng, K.-Y., Zhang, X., Tong, P.-J., Yao, Y., & Du, Y.-P. (2015). Pretreating near infrared spectra with fractional order Savitzky–Golay differentiation (FOSGD). Chinese Chemical Letters, 26(3), 293-296. https://doi.org/10.1016/j.cclet.2014.10.023
CAPTCHA Image