نوع مقاله : مقاله پژوهشی لاتین
نویسندگان
دانشگاه صنعتی اصفهان
چکیده
هدف از این تحقیق بررسی کارایی الکتروریسی بدون نازل برای انکپسوله کردن اسانس زنیان (بهعنوان یک زیست فعال آبگریز) با استفاده از دو هیدروکلوئید (کیتوزان/ژلاتین) بهمنظور افزایش خواص آنتیاکسیدانی و پایداری آن برای کاربردهای غذایی بود. نانوالیاف با استفاده از کیتوزان/ژلاتین در نسبتهای 1:6، 1:8 و 1:10 و غلظتهای 20 و 40 درصد زنیان ریسیده شدند. خواص محلول (ویسکوزیته و هدایت الکتریکی) اندازهگیری شد. دادههای کارایی انکپسولاسیون و ظرفیت بارگذاری مبین بهبود با افزایش غلظت اسانس بود. قطر و مورفولوژی الیاف با میکروسکوپ الکترونی روبشی مورد بررسی قرار گرفت. نانوالیاف کیتوزان/ژلاتین با نسبت 1:6 حاوی 40 درصد اسانس دارای بیشترین کارایی انکپسولاسیون (9/99%)، ظرفیت بارگذاری (9/39%) و کمترین قطر ( nm146) بودند. طیفسنجی فروسرخ با انعکاس کلی ضعیف شده (ATR-FTIR) ثابت کرد که حین الکتروریسی، هیچ برهمکنش شیمیایی بین مواد تشکیلدهنده رخ نداده است و دادههای کالریمتری روبشی افتراقی (DSC) نشان داد که اسانس بهخوبی در نانوالیاف محصور شده است. خواص آنتیاکسیدانی توسط آزمون DPPH تجزیه و تحلیل شد و کارایی کپسولاسیون برای محافظت از آنتیاکسیدانها را تأیید کرد.
کلیدواژهها
موضوعات
عنوان مقاله [English]
Nozzle-less electrospinning: Nanoencapsulation of ajwain essential oil using chitosan-gelatin nanofibers
نویسندگان [English]
- Behnaz Vafania
- Milad Fathi
- Sabiheh Soleimanian Zad
Isfahan University of Technology
چکیده [English]
The aim of this research was to investigate the efficiency of nozzle-less electrospinning for encapsulation of ajwain essential oil (as a hydrophobic bioactive) using two hydrocolloids (chitosan/gelatin) in order to enhance its antioxidant properties and stability for food applications. Nanofibers were spun using chitosan/gelatin in ratios of 1:6, 1:8 and 1:10 and ajwain concentrations of 20 and 40%. Solution properties (i.e. viscosity and electrical conductivity) were measured. Encapsulation efficiency and loading capacity data illustrated an enhancement with increasing of essential oil concentration. Fibers diameter and morphology were studied by scanning electron microscopy (SEM). The chitosan/gelatin nanofibers with ratio of 1:6 containing 40% essential oil had the highest encapsulation efficiency (99.9%), loading capacity (39.9%) and the smallest diameter (146 nm). Attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR) proved that during electrospinning, no any chemical interaction was occurred between ingredients and differential scanning calorimetry (DSC) data showed that essential oil was well encapsulated in nanofibers. Antioxidant properties were analyzed by 2,2-diphenyl-1-picrylhydrazylradical and approved the efficiency of encapsulation for protection of antioxidants.
کلیدواژهها [English]
- Ajwain essential oil
- Antioxidant activity
- Encapsulation
- Nanofibers
- Nozzle-less electrospinning
- Altiok, D., Altiok, E., & Tihminlioglu, F. (2010). Physical, antibacterial and antioxidant properties of chitosan films incorporated with thyme oil for potential wound healing applications. Journal of Materials Science: Materials in Medicine, 21(7), 2227-2236. https://doi.org/10.1007/s10856-010-4065-x
- Amjadi, S., Emaminia, S., Davudian, S. H., Pourmohammad, S., Hamishehkar, H., & Roufegarinejad, L. (2019). Preparation and characterization of gelatin-based nanocomposite containing chitosan nanofiber and ZnO nanoparticles. Carbohydrate Polymers, 216, 376-384. https://doi.org/10.1016/j.carbpol.2019.03.062
- Bashiri, S., Ghanbarzadeh, B., Ayaseh, A., Dehghannya, J., & Ehsani, A. (2020). Preparation and characterization of chitosan-coated nanostructured lipid carriers (CH-NLC) containing cinnamon essential oil for enriching milk and anti-oxidant activity. LWT, 119, 108836. https://doi.org/10.1016/j.lwt.2019.108836
- Bertolo, M. R., Martins, V. C., Horn, M. M., Brenelli, L. B., & Plepis, A. M. (2020). Rheological and antioxidant properties of chitosan/gelatin-based materials functionalized by pomegranate peel extract. Carbohydrate Polymers, 228, 115386. https://doi.org/10.1016/j.carbpol.2019.115386
- Cevallos, P. A. P., Buera, M. P., & Elizalde, B. E. (2010). Encapsulation of cinnamon and thyme essential oils components (cinnamaldehyde and thymol) in β-cyclodextrin: Effect of interactions with water on complex stability. Journal of Food Engineering, 99(1), 70-75. https://doi.org/10.1016/j.jfoodeng.2010.01.039
- Charernsriwilaiwat, N., Rojanarata, T., Ngawhirunpat, T., Sukma, M., & Opanasopit, P. (2013). Electrospun chitosan-based nanofiber mats loaded with Garcinia mangostana International journal of pharmaceutics, 452(1-2), 333-343. https://doi.org/10.1016/j.ijpharm.2013.05.012
- Chatterjee, S., Jain, A., & De, S. (2017). Effect of different operating conditions in cloud point assisted extraction of thymol from Ajwain (Trachyspermum Ammi) seeds and recovery using solvent. Journal of food science and technology, 54(13), 4353-4361. https://doi.org/10.1007/s13197-017-2906-z
- Dhandayuthapani, B., Krishnan, U. M., & Sethuraman, S. (2010). Fabrication and characterization of chitosan‐gelatin blend nanofibers for skin tissue engineering. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 94(1), 264-272. https://doi.org/10.1002/jbm.b.31651
- Ebrahimi, S., Fathi, M., & Kadivar, M. (2019). Production and characterization of chitosan-gelatin nanofibers by nozzle-less electrospinning and their application to enhance edible film’s properties. Food Packaging and Shelf Life, 22, 100387. https://doi.org/10.1016/j.fpsl.2019.100387
- Gortzi, O., Lalas, S., Chinou, I., & Tsaknis, J. (2008). Reevaluation of bioactivity and antioxidant activity of Myrtus communis extract before and after encapsulation in liposomes. European food research and technology, 226(3), 583-590. https://doi.org/10.1007/s00217-007-0592-1
- Guinesi, L. S., & Cavalheiro, E. T. G. (2006). The use of DSC curves to determine the acetylation degree of chitin/chitosan samples. Thermochimica Acta, 444(2), 128-133. https://doi.org/10.1016/j.tca.2006.03.003
- Haider, A., Haider, S., & Kang, I.-K. (2018). A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arabian Journal of Chemistry, 11(8), 1165-1188. https://doi.org/10.1016/j.arabjc.2015.11.015
- Haider, S., Al‐Masry, W. A., Bukhari, N., & Javid, M. (2010). Preparation of the chitosan containing nanofibers by electrospinning chitosan–gelatin complexes. Polymer Engineering & Science, 50(9), 1887-1893. https://doi.org/10.1002/pen.21721
- Karim, M., Fathi, M., & Soleimanian-Zad, S. (2020). Incorporation of zein nanofibers produced by needle-less electrospinning within the casted gelatin film for improvement of its physical properties. Food and Bioproducts Processing, 122, 193-204. https://doi.org/10.1016/j.fbp.2020.04.006
- Keawchaoon, L., & Yoksan, R. (2011). Preparation, characterization and in vitro release study of carvacrol-loaded chitosan nanoparticles. Colloids and surfaces B: Biointerfaces, 84(1), 163-171. https://doi.org/10.1016/j.colsurfb.2010.12.031
- Kostakova, E., Meszaros, L., & Gregr, J. (2009). Composite nanofibers produced by modified needleless electrospinning. Materials Letters, 63(28), 2419-2422. https://doi.org/10.1016/j.matlet.2009.08.014
- Kurd, F., Fathi, M., & Shekarchizadeh, H. (2017). Basil seed mucilage as a new source for electrospinning: Production and physicochemical characterization. International journal of biological macromolecules, 95, 689-695. https://doi.org/10.1016/j.ijbiomac.2016.11.116
- Liu, F., Liu, Y., Sun, Z., Wang, D., Wu, H., Du, L., & Wang, D. (2020). Preparation and antibacterial properties of ε-polylysine-containing gelatin/chitosan nanofiber films. International journal of biological macromolecules, 164, 3376-3387. https://doi.org/10.1016/j.ijbiomac.2020.08.152
- Moomand, K., & Lim, L. T. (2015). Effects of solvent and n-3 rich fish oil on physicochemical properties of electrospun zein fibres. Food Hydrocolloids, 46, 191-200. https://doi.org/10.1016/j.foodhyd.2014.12.014
- Naebe, M., Lin, T., Tian, W., Dai, L., & Wang, X. (2007). Effects of MWNT nanofillers on structures and properties of PVA electrospun nanofibres. Nanotechnology, 18(22), 225605. DOI1088/0957-4484/18/22/225605
- Nahr, F. K., Ghanbarzadeh, B., Hamishehkar, H., & Kafil, H. S. (2018). Food grade nanostructured lipid carrier for cardamom essential oil: Preparation, characterization and antimicrobial activity. Journal of Functional Foods, 40, 1-8. https://doi.org/10.1016/j.jff.2017.09.028
- Park, W. H., Jeong, L., Yoo, D. I., & Hudson, S. (2004). Effect of chitosan on morphology and conformation of electrospun silk fibroin nanofibers. Polymer, 45(21), 7151-7157. https://doi.org/10.1016/j.polymer.2004.08.045
- Piran, F., Khoshkhoo, Z., Hosseini, S., & Azizi, M. (2020). Controlling the antioxidant activity of green tea extract through encapsulation in chitosan-citrate Nanogel. Journal of Food Quality, 2020. https://doi.org/10.1155/2020/7935420
- Rezaei, A., Nasirpour, A., & Fathi, M. (2015). Application of cellulosic nanofibers in food science using electrospinning and its potential risk. Comprehensive Reviews in Food Science and Food Safety, 14(3), 269-284. https://doi.org/10.1111/1541-4337.12128
- Rezaei, A., Nasirpour, A., Tavanai, H., & Fathi, M. (2016). A study on the release kinetics and mechanisms of vanillin incorporated in almond gum/polyvinyl alcohol composite nanofibers in different aqueous food simulants and simulated saliva. Flavour and Fragrance journal, 31(6), 442-447. https://doi.org/10.1002/ffj.3335
- Rodrigues, M. Á. V., Marangon, C. A., Martins, V. d. C. A., & de Guzzi Plepis, A. M. (2021). Chitosan/gelatin films with jatobá resin: Control of properties by vegetal resin inclusion and degree of acetylation modification. International journal of biological macromolecules, 182, 1737-1745. https://doi.org/10.1016/j.ijbiomac.2021.05.160
- Shao, P., Niu, B., Chen, H., & Sun, P. (2018). Fabrication and characterization of tea polyphenols loaded pullulan-CMC electrospun nanofiber for fruit preservation. International journal of biological macromolecules, 107, 1908-1914. https://doi.org/10.1016/j.ijbiomac.2017.10.054
- Tabatabai, M. B., Mirjalili, M., Yazdiyan, F., & Hekmatimoghaddam, S. (2019). Antibacterial activity and cytotoxicity of nanoliposomic and nanoniosomic essential oil of Trachyspermum copticum. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 89(3), 1109-1116. https://doi.org/10.1007/s40011-018-1025-6
- Trifković, K. T., Milašinović, N. Z., Djordjević, V. B., Krušić, M. T. K., Knežević-Jugović, Z. D., Nedović, V. A., & Bugarski, B. M. (2014). Chitosan microbeads for encapsulation of thyme (Thymus serpyllum) polyphenols. Carbohydrate polymers, 111, 901-907. https://doi.org/10.1016/j.carbpol.2014.05.053
- Vafania, B., Fathi, M., & Soleimanian-Zad, S. (2019). Nanoencapsulation of thyme essential oil in chitosan-gelatin nanofibers by nozzle-less electrospinning and their application to reduce nitrite in sausages. Food and Bioproducts Processing, 116, 240-248. https://doi.org/10.1016/j.fbp.2019.06.001
- Voron’ko, N. G., Derkach, S. R., Kuchina, Y. A., & Sokolan, N. I. (2016). The chitosan–gelatin (bio) polyelectrolyte complexes formation in an acidic medium. Carbohydrate Polymers, 138, 265-272. https://doi.org/10.1016/j.carbpol.2015.11.059
- Wu, Y., Luo, Y., & Wang, Q. (2012). Antioxidant and antimicrobial properties of essential oils encapsulated in zein nanoparticles prepared by liquid–liquid dispersion method. LWT-Food Science and Technology, 48(2), 283-290. https://doi.org/10.1016/j.lwt.2012.03.027
- Xu, J., Wei, R., Jia, Z., & Song, R. (2020). Characteristics and bioactive functions of chitosan/gelatin-based film incorporated with ε-polylysine and astaxanthin extracts derived from by-products of shrimp (Litopenaeus vannamei). Food Hydrocolloids, 100, 105436. https://doi.org/10.1016/j.foodhyd.2019.105436
- Zhang, H., Liang, Y., Li, X., & Kang, H. (2020). Effect of chitosan-gelatin coating containing nano-encapsulated tarragon essential oil on the preservation of pork slices. Meat science, 166, 108137. https://doi.org/10.1016/j.meatsci.2020.108137
Zhu, Y., Bhandari, B., & Prakash, S. (2018). Tribo-rheometry behaviour and gel strength of κ-carrageenan and gelatin solutions at concentrations, pH and ionic conditions used in dairy products. Food Hydrocolloids, 84, 292-302. https://doi.org/10.1016/j.foodhyd.2018.06.016
ارسال نظر در مورد این مقاله