با همکاری انجمن علوم و صنایع غذایی ایران

نوع مقاله : مقاله پژوهشی لاتین

نویسندگان

1 دانشگاه پیام نور

2 دانشگاه فردوسی مشهد

3 دانشگاه علوم کشاورزی و منابع طبیعی خوزستان

چکیده

استفاده از آنتی‌بیوتیک‌ها در پرورش دام به‌ویژه طیور منجر به افزایش مقاومت آنتی‌بیوتیکی و اختلالات انسانی می‌شود. بنابراین، پژوهشگران به دنبال یک جایگزین خوب برای بهبود تعادل میکروبی روده، عملکرد رشد و کیفیت گوشت دام هستند. مطالعه حاضر با هدف بررسی تأثیر جیره‌های حاوی سطوح مختلف (صفر، 90 و 100 درصد) پروبیوتیک فرماکتو (F)، پری‌بیوتیک پریمالاک (P) و مخلوط آنها بر ویژگی‌های شیمیایی، میکروبی و حسی بلدرچین ژاپنی انجام شد. گوشت نمونه F100 بالاترین امتیاز رنگ و بو را نشان داد. در حالی که ویژگی آبداری  به سطح پری‌بیوتیک وابسته‌تر بود F100P100 و F90P90 به‌ترتیب بالاترین امتیاز را در طعم گوشت و پذیرش کلی کسب کردند. کمترین تعداد میکروارگانیسم و کلی‌فرم کل درF90P100، طی مدت نگهداری مشاهده شد. به‌طور کلی افزودن سین‌بیوتیک‌ها به جیره بلدرچین ژاپنی علاوه بر کنترل اکسیداسیون در یخچال منجر به بهبود کیفیت گوشت و کاهش آلودگی میکروبی شد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Synbiotics as potentially growth promoter substitution for improving microbial and oxidative stability of Japanese quail meat

نویسندگان [English]

  • Behzad Nasehi 1
  • Majid Nooshkam 2
  • Mitra Ghodsi 3
  • Ahmad Tatar 3

1 Payame Noor University (PNU)

2 Ferdowsi University of Mashhad

3 Agricultural Sciences and Natural Resources University of Khuzestan

چکیده [English]

The use of antibiotics in livestock breeding, especially poultry, leads to an increase in antibiotic resistance and human disorders. Therefore, researchers are seeking a good substitute to improve gut microbial balance, growth performance, and meat quality of livestock. The present study was aimed to investigate the effect of diets containing different levels (0, 90, and 100%) of probiotic Fermacto (F), prebiotic Primalac (P), and their mixture on chemical, microbial, and sensory properties of Japanese quail meat. The F100 sample showed the highest color and odor scores; whilst, juicier feature was more dependent on prebiotic level. F100P100 and F90P90 ranked the highest meat flavor and overall acceptance scores, respectively. The lowest number of microorganisms and total coliforms were observed in F90P100 during storage. In general, the addition of synbiotics to the diet of Japanese quail led to improve in meat quality and decrease in microbial contamination besides controlled oxidation during refrigeration.

کلیدواژه‌ها [English]

  • Japanese quail
  • Antibiotic
  • Synbiotic
  • Poultry
  • Meat quality
  1. Asghar, A., Gray, J. I., Booren, A. M., Gomaa, E. A., Abouzied, M. M., Miller, E. R., & Buckley, D. J. (1991). Effects of supranutritional dietary vitamin E levels on subcellular deposition of α-tocopherol in the muscle and on pork quality. Journal of the Science of Food and Agriculture, 57(1), 31-41.
  2. Ashraf, A., Abd Rahman, F., & Abdullah, N. (2018). Poultry Feed in Malaysia: An Insight into the Halalan Toyyiban Issues. Paper presented at the Proceedings of the 3rd International Halal Conference (INHAC 2016), Singapore. https://doi.org/10.1007/978-981-10-7257-4_45
  3. Barbieri, A., do Valle Polycarpo, G., Cardoso, R. G. A., da Silva, K. M., Dadalt, J. C., Madeira, A. M. B. N., . . . Cruz-Polycarpo, V. C. (2015). Effect of probiotic and organic acids in an attempt to replace the antibiotics in diets of broiler chickens challenged with Eimeria spp. International Journal of Poultry Science, 14(11), 606.
  4. Bigliardi, B., & Galati, F. (2013). Innovation trends in the food industry: The case of functional foods. Trends in Food Science & Technology, 31(2), 118-129. https://doi.org/10.1016/j.tifs.2013.03.006
  5. Botsoglou, N. A., Fletouris, D. J., Papageorgiou, G. E., Vassilopoulos, V. N., Mantis, A. J., & Trakatellis, A. G. (1994). Rapid, Sensitive, and Specific Thiobarbituric Acid Method for Measuring Lipid Peroxidation in Animal Tissue, Food, and Feedstuff Samples. Journal of Agricultural and Food Chemistry, 42(9), 1931-1937. https://doi.org/10.1021/jf00045a019
  6. Brannan, R. G. (2009). Effect of grape seed extract on descriptive sensory analysis of ground chicken during refrigerated storage. Meat Science, 81(4), 589-595. https://doi.org/10.1016/j.meatsci.2008.10.014
  7. Bronzato, S., & Durante, A. (2017). A Contemporary Review of the Relationship between Red Meat Consumption and Cardiovascular Risk. International journal of preventive medicine, 8, 40-40. DOI: 4103/ijpvm.IJPVM_206_16
  8. Danka, S., Dionyz, M., & Hanna, R. (2007). Effects of dietary rosemary extract and alfa tocopherol on the performance of chickens, meat quality and lipid oxidation in meat. Bulletin- Veterinary Institute in Pulawy, 51(4), 585-589.
  9. Das, D., & Goyal, A. (2015). Antioxidant activity and γ-aminobutyric acid (GABA) producing ability of probiotic Lactobacillus plantarum DM5 isolated from Marcha of Sikkim. LWT - Food Science and Technology, 61(1), 263-268. https://doi.org/10.1016/j.lwt.2014.11.013
  10. De Smet, S., & Vossen, E. (2016). Meat: The balance between nutrition and health. A review. Meat Science, 120, 145-156. https://doi.org/10.1016/j.meatsci.2016.04.008
  11. Eftekhari, S. M., & Niazi Hesar Sefidi, S. (2010). Effect of complementary application of rosemary herb on improving the shelf life and quality of meat in broiler chicks. The Fifth National Conference on New Ideas in Agriculture, Khorasgan, Islamic Azad University, Khorasgan Branch.
  12. Emadzadeh, B., Varidi, M. J., & Nassiri Mahallati, M. (2011). The Physico- Chemical Characteristics of Sheep Meat Post Mortem. Iranian Food Science and Technology Research Journal, 7(2), 164-172.
  13. Faber, T. A., Dilger, R. N., Iakiviak, M., Hopkins, A. C., Price, N. P., & Fahey, G. C. (2012). Ingestion of a novel galactoglucomannan oligosaccharide-arabinoxylan (GGMO-AX) complex affected growth performance and fermentative and immunological characteristics of broiler chicks challenged with Salmonella typhimurium1. Poultry Science, 91(9), 2241-2254. https://doi.org/10.3382/ps.2012-02189
  14. Gibson, G. R., & Roberfroid, M. B. (1995). Dietary Modulation of the Human Colonic Microbiota: Introducing the Concept of Prebiotics. The Journal of Nutrition, 125(6), 1401-1412. https://doi.org/10.1093/jn/125.6.1401
  15. He, Z., Wang, X., Li, G., Zhao, Y., Zhang, J., Niu, C., . . . Li, S. (2015). Antioxidant activity of prebiotic ginseng polysaccharides combined with potential probiotic Lactobacillus plantarum C88. International Journal of Food Science & Technology, 50(7), 1673-1682. https://doi.org/10.1111/ijfs.12824
  16. Javadi, A., Mirzaei, H., Safarmashaei, S., & Vahdatpour, S. (2012). Effects of probiotic (live and inactive Saccharomyces cerevisiae) on meat and intestinal microbial properties of Japanese quails. African Journal of Biotechnology, 11(57), 12083-12087. DOI: 5897/AJB12.232
  17. Kabir, S., Rahman, M., & Rahman, M. (2005). Potentiation of probiotics in promoting microbiological meat quality of broilers. Bangladesh Soc. Agric. Sci. Technol, 2, 93-96.
  18. Kalsum, U., Soetanto, H., & Sjofjan, O. (2012). Influence of a probiotic containing Lactobacillus fermentum on the laying performance and egg quality of Japanese quails. International Journal of Poultry Science, 11(4), 311-315.
  19. Khademipoor, N., Nasehi, B., & Tahanejad, M. (2017). Investigation of diet enriched with medicinal herbs on the sensorial, microbial and shelf-life characteristics of the Japanese quail meat. Iranian Journal of Food Science And Technology, 13(60), 1-10.
  20. Kim, Y. H., Nam, K. C., & Ahn, D. U. (2002). Volatile profiles, lipid oxidation and sensory characteristics of irradiated meat from different animal species. Meat Science, 61(3), 257-265. https://doi.org/10.1016/S0309-1740(01)00191-7
  21. Lauzurica, S., de la Fuente, J., Díaz, M. T., Álvarez, I., Pérez, C., & Cañeque, V. (2005). Effect of dietary supplementation of vitamin E on characteristics of lamb meat packed under modified atmosphere. Meat Science, 70(4), 639-646. https://doi.org/10.1016/j.meatsci.2005.02.013
  22. Marcinčák, S., Cabadaj, R., Popelka, P., & Šoltýsová, L. (2008). Antioxidative effect of oregano supplemented to broilers on oxidative stability of poultry meat. Slov Vet Res, 45(2), 61-66.
  23. Marconi, E., Graziano, M., Cubadda, R. (2000). Composition and Utilization of Barley Pearling By-Products for Making Functional Pastas Rich in Dietary Fiber and beta-Glucans. Cereal Chem, 77(2), 133-139. https://doi.org/10.1094/CCHEM.2000.77.2.133
  24. Mehdi, Y., Létourneau-Montminy, M.-P., Gaucher, M.-L., Chorfi, Y., Suresh, G., Rouissi, T., . . . Godbout, S. (2018). Use of antibiotics in broiler production: Global impacts and alternatives. Animal Nutrition, 4(2), 170-178. https://doi.org/10.1016/j.aninu.2018.03.002
  25. Muaz, K., Riaz, M., Akhtar, S., Park, S., & Ismail, A. (2018). Antibiotic Residues in Chicken Meat: Global Prevalence, Threats, and Decontamination Strategies: A Review. Journal of Food Protection, 81(4), 619-627.
  26. Nasehi, B., Chaji, M., Ghodsi, M., & Puranian, M. (2015). Effect of diet containing probiotic on the properties of Japanese quail meat during the storage time. Iranian Journal of Nutrition Sciences & Food Technology, 9(4), 77-86.
  27. National-Research-Council. (1994). Nutrient requirements of poultry: 1994: National Academies Press.
  28. Nieto, G., Díaz, P., Bañón, S., & Garrido, M. D. (2010). Effect on lamb meat quality of including thyme (Thymus zygis ssp. gracilis) leaves in ewes’ diet. Meat Science, 85(1), 82-88. https://doi.org/10.1016/j.meatsci.2009.12.009
  29. Panda, S., Babu, L. K., Panda, A. K., S, T., Mohanty, A., Panigrahy, K. K., & Samal, P. (2017). Effect of dietary supplementation of fermented fish silage on serum biochemical parameters of broiler Japanese quails (Coturnix coturnix japonica). Veterinary world, 10(4), 380-385. DOI: 14202/vetworld.2017.380-385
  30. Pandey, K. R., Naik, S. R., & Vakil, B. V. (2015). Probiotics, prebiotics and synbiotics- a review. Journal of Food Science and Technology, 52(12), 7577-7587. https://doi.org/10.1007/s13197-015-1921-1
  31. Roberfroid, M. B. (2000). Prebiotics and probiotics: are they functional foods? The American Journal of Clinical Nutrition, 71(6), 1682S-1687S. https://doi.org/10.1093/ajcn/71.6.1682S
  32. Schäfer, A., Rosenvold, K., Purslow, P. P., Andersen, H. J., & Henckel, P. (2002). Physiological and structural events post mortem of importance for drip loss in pork. Meat Science, 61(4), 355-366. https://doi.org/10.1016/S0309-1740(01)00205-4
  33. Senobar, h., Shams Shargh, m., Dastar, b., & Zerehdaran, s. (2012). Effect of Different Levels of Organic Selenium and Vitamin E on Performance and Meat Quality in Japanese Quail. Iranian Journal of Animal Science Research, 4(1).
  34. Severino, R., Ferrari, G., Vu, K. D., Donsì, F., Salmieri, S., & Lacroix, M. (2015). Antimicrobial effects of modified chitosan based coating containing nanoemulsion of essential oils, modified atmosphere packaging and gamma irradiation against Escherichia coli O157:H7 and Salmonella Typhimurium on green beans. Food Control, 50, 215-222. https://doi.org/10.1016/j.foodcont.2014.08.029
  35. Soglia, F., Baldi, G., & Petracci, M. (2020). Effect of the exposure to oxidation and malondialdehyde on turkey and rabbit meat protein oxidative stability. Journal of Food Science, 85(10), 3229-3236. https://doi.org/10.1111/1750-3841.15403
  36. Timmer, C. P. (2017). The Impact of Supermarkets on Nutrition and Nutritional Knowledge: A Food Policy Perspective. In S. de Pee, D. Taren, & M. W. Bloem (Eds.), Nutrition and Health in a Developing World (pp. 737-751). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-43739-2_33
  37. Tripathi, M. K., & Giri, S. K. (2014). Probiotic functional foods: Survival of probiotics during processing and storage. Journal of Functional Foods, 9, 225-241. https://doi.org/10.1016/j.jff.2014.04.030
CAPTCHA Image