با همکاری انجمن علوم و صنایع غذایی ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

چکیده

هدف از این پژوهش استفاده از پوشش ‌خوراکی‌ چندلایه کیتوزان و پکتین حاوی میکرو‌کپسول‌های بتا‌سیکلو‌دکسترین حاوی اسانس‌های ترانس­سینامالدهید ‌(دارچین) یا تیمول (آویشن) جهت افزایش زمان ماندگاری و حفظ کیفیت پس از برداشت میوه خیار بود. نمونه‌های خیار با پکتین (1 درصد) و کیتوزان (صفر، 5/0و 1 درصد) حاوی غلظت‌های مختلف (صفر، 25/0و 5/0 درصد) از اسانس‌های میکروانکپسوله شده ترانس­سینامالدهید یا تیمول پوشش داده ‌شدند. سپس در دمای 10 درجه سانتی‌گراد و رطوبت نسبی 90 تا 95 درصد، به مدت 15 روز نگهداری گردیدند. ویژگی‌های شیمیایی (مواد جامد محلول، اسیدیته ‌قابل ‌تیتر) و فیزیکی (رنگ، بافت و کاهش ‌وزن) نمونه‌های خیار در تناوب‌های زمانی پنج روزه (روز 0، 5، 10 و 15ام) بررسی شدند. آزمایش‌های میکروبی در پایان زمان نگهداری انجام پذیرفت. آنالیز آماری براساس آزمون فاکتوریل 4 فاکتوره با طرح کاملا تصادفی انجام شد. در مدت‌ نگهداری خیار در انبار‌ سرد، میزان کاهش ‌وزن و مواد جامد محلول در آب و تفاوت ‌رنگی کل در میوه روند افزایشی و میزان اسیدیته ‌قابل‌ تیتر و سفتی بافت روند کاهشی داشت. نمونه‌های پوشش‌داده‌ شده با بالاترین غلظت کیتوزان (1 درصد) و اسانس (5/0 درصد)، کمترین درصد افت‌ وزنی ، افت‌ سفتی و تغییر ‌رنگ را در طول دوره 15روزه نگهداری نشان دادند. با افزایش غلظت کیتوزان و غلظت اسانس‌روغنی، توانایی فیلم‌خوراکی در ممانعت از رشد میکروارگانیسم‌ها افزایش یافت. تیمول در مقایسه با ترانس‌سینامالدهید توانایی بیشتری در ممانعت از رشد کپک و مخمر در سطح خیار نشان داد. به‌طور کلی با توجه به نتایج آزمایش‌های شیمیایی، فیزیکی و میکروبی می‌توان نتیجه‌گیری کرد که پوشش چندلایه حاوی کیتوزان 1 درصد و تیمول 5/0 درصد برای افزایش زمان ماندگاری پس ‌از‌ برداشت میوه خیار مؤثر بوده ‌است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Evaluation of the Effect of Chitosan/Pectin Multi Layer Edible Coating Containing Microencapsulated Cinnamon or Thyme Essential Oils on Increasing the Postharvest Shelf Life of Cucumber

نویسندگان [English]

  • Shohreh Nikkhah
  • Fakhri Shahidi
  • Mohebbat Mohebbi
  • Farideh Tabatabaei Yazdi

Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran

چکیده [English]

Introduction
Cucumber is an economically important crop, containing vitamins, minerals, antioxidants, and flavonoids. However, due to loss of weight and firmness, microbial contamination, mechanical damage, and yellowing, the storage duration of cucumber is limited to 3–5 days at room temperature. Therefore, pretreatments are crucial for prolonging its shelf life. Chitosan is a cationic polysaccharide and can interact electrostatically with anionic, partially demethylated pectin. Besides, chitosan has inhibitory effects on fungal rot and prevents weight loss in fruits. Pectin can form excellent films. Because of increasing demand to reduce synthetic chemicals as antimicrobial agents, substances derived from plants, such as essential oils, can play a significant role in the future.  Several essential oils and essential oil components have shown antimicrobial activity against spoilage and pathogenic microorganisms during fruit and vegetable storage. Essential oils of thyme and cinnamon contained phenolic groups have been found to be most consistently effective against microorganisms, however, essential oils are volatile and irritant. Therefore, forming an inclusion complex using b-cyclodextrin can improve solubility, control volatile, and induce off-flavors and unpleasant odor of the essential oils. The objectives of this study were to develop the microencapsulated thymol (thyme) and trans-cinnamaldehyde (cinnamon) essential oils to produce antimicrobial agents and subsequently evaluate the effectiveness of edible coating made of chitosan and pectin containing microencapsulated trans-cinnamaldehyde or thymol essential oils to improve qualitative and quantitative characteristics and shelf life of cucumber.
Materials and Methods
The inclusion complexes of trans-cinnamaldehyde and thymol in beta-cyclodextrin (CD) were prepared separately by freeze-drying. Each essential oil was dispersed in 1000 ml of beta-cyclodextrin aqueous solution (16 mmol/L, 18.15 g) in molecular ratio 1:1 (2.4 gr thymol, 2.11 gr trans-cinnamaldehyde) and mixed in a laboratory stirrer for 24 hour at room temperature , then frozen (-70 ºc) and freeze-dried (<20Pa, 48 h). Lyophilized samples were stored inside a freezer (-20 ºc) until further use. Cucumbers cv. Nagene with uniform size, appearance, ripeness and without mechanical damage or fungal contamination were selected. Then They were then sanitized by immersion in chlorine solution (150 mg/kg) for 1 min and air dried. Edible coatings were prepared as three immersion solutions of chitosan, pectin, and calcium chloride (CaCl2). The fruits were coated with pectin (1%) and chitosan (0-0.5%-1%) containing beta-cyclodextrin microencapsulated trans-Cinnamaldehyde or thymol each (0-0.25%-0.5%). After coating by chitosan, the fruits were immersed in 1% Calcium chloride solution to induce crosslinking reaction. After dipping step, fruits dried for 8 minutes at room temperature to remove the excess solution attached to the surface .Uncoated fruits served as control. Then fruits were preserved in cold storage (temperature: 10ºc; relative humidity: 90-95%) for 15 days. chemical (total soluble solids, titratable acidity) and physical (total color difference, Hardness, and weight loss) Characterization of fruits were measured immediately after harvest and after 5, 10 and15 days. Microbial tests (total count, mold, and yeast) were done at the end of preservation time. Analytical data were subjected to analysis of variance and factorial adopted completely randomized design and a Duncan comparison test was used.
 
Results and Discussion
The results showed that weight loss, total soluble solids, and the total color difference increased and hardness and titratable acidity decreased gradually in all samples during cold storage (<0.05). Chitosan and essential oils slowed down this rising or decreasing trends. Interactive effects of chitosan, essential oil type, essential oil concentration, and storage time had positive effects on these quality attributes. The fruits coated with the highest concentration of chitosan (1%) and thymol (0.5%) essential oils showed the least weight loss, loss of hardness, and color change throughout 15 days of storage. Besides thymol in comparison with trans-Cinnamaldehyde was more efficient to prevent yeasts and molds on the surface of cucumber. By increasing chitosan and essential oil amounts, the ability of inhibiting microbial growth by coating is enhanced.
 
Conclusion
The results of chemical, physical and microbial tests, showed that multi-layer coating solution containing chitosan 1% with thymol 0.5% was effective in extending the shelf life of cucumber. The combined usage of microencapsulated thymol essential oil and chitosan-based coating on cucumber could be considered a healthy and effective treatment that reduces microbial spoilage and preserves quality and color characteristics in cucumber and represents an innovative method for commercial application. Therefore, this coating can be used as an alternative to chemical fungicides to prevent fungal rot of cucumber and other fruits, however, it is suggested that more studies should be done in this field.
 

کلیدواژه‌ها [English]

  • Cucumber
  • Edible coating
  • Chitosan
  • Essential oils
  • Shelf life

©2023 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source.

  1. Abdelghany, A.M., Menazea, A.A., & Ismail, A.M. (2019). Synthesis, characterization and antimicrobial activity of Chitosan/Polyvinyl Alcohol blend doped with Hibiscus sabdariffa extract. Journal of Molecular Structure, 1197, 603-609. https://doi.org/10.1016/j.molstruc.2019.07.089
  2. Adetunji, C.O., Fadiji, A.E., & Aboyeji, O.O.(2014). Effect of chitosan coating combined Aloe vera gel on cucumber (Cucumis sativa) post-harvest quality during ambient storage. Journal of Emerging Trends in Engineering and Applied Sciences, 5(6), 391-397.
  3. Ali, A., Zahid, N., Manickam, S., Siddiqui, Y., & Alderson, P.G. (2014). Double layer coatings: a new technique for maintaining physico-chemical characteristics and antioxidant properties of dragon fruit during storage. Food and Bioprocess Technology, 7, 2366-2374. https://doi.org/1007/s11947-013-1224-3
  4. Aragüez, L., Colombo, A., Borneo, R., & Aguirre, A. (2020). Active packaging from triticale flour films for prolonging storage life of cherry tomato. Food Packaging and Shelf Life, 25, 100520. https://doi.org/10.1016/j.fpsl.2020.100520
  5. Attokaran, M. (2017). Natural food flavors and colorants. Chap 98, 354-398. https://doi.org/1002/97811191 14796
  6. Aziziyan Dehkordi, B., Zamindar, N., Ghorbani, Z., & Mosaffa, L. (2020). Changes in the physicochemical and microbial properties of fresh-cut cucumber during storage as affected by modified atmosphere packaging and films of polypropylene containing clay nanoparticles. Journal of Nutrition Science and Food Technology, 15(12), 83-62. (In Persian)  
  7. Boonsiriwit, A., Xiao, Y., Joung, J., Kim, M., Singh, S., & Lee, Y.S. (2020). Alkaline halloysite nanotubes/low density polyethylene nanocomposite films with increased ethylene absorption capacity: Applications in cherry tomato packaging. Food Packaging and Shelf Life, 25, 100533. https://doi.org/10.1016/j.fpsl.2020.100533
  8. Chen, A., Yang, Z., Zhang, N., Zhao, S., & Chen, M. (2015). Effects of cold shock intensity on physiological activity of harvested cucumbers during storage. Scientia Horticulturae, 197, 420–427. https://doi.org/10.1016/j.scienta.2015.09.056
  9. Cid-López, M.L., Soriano-Melgar, L.D.A.A., García-González, A., Cortéz-Mazatán, G., Mendoza, E., Rivera-Cabrera, F., & Peralta-Rodríguez, R.D.(2021). The benefits of adding calcium oxide nanoparticles to biocompatible polymeric coatings during cucumber fruits postharvest storage. Scientia Horticulturae, 287, 110285. https://doi.org/10.1016/j.scienta.2021.110285
  10. Chien, P.J., Sheu, F., & Yang, F.H. (2007). Effects of edible chitosan coating on quality and shelf life of sliced mango fruit. Journal of Food Engineering, 78, 225-229. https://doi.org/10.1016/j.jfoodeng.2005.09.022
  11. Eboibi, O., & Uguru, H. (2017). Storage conditions effect on physical, mechanical and textural properties of intact cucumber (cv Nandini) fruit. International Journal of Engineering and Technical Research (IJETR), 7(11), 48-56.
  12. Gelly, M., Recasens, I., Girona, J., Mata, M., Arbones, A., Rufat, J., & Marsal, J.(2004). Effects of stage II and postharvest deficit irrigation on peach quality during maturation and after cold storage. Journal of the Science of Food and Agriculture, 84(6), 561–568. https://doi.org/10.1002/jsfa.1686
  13. Goy, R.C., Britto, D.D., & Assis, O.B. (2009). A review of the antimicrobial activity of chitosan. Polímeros: Ciência e Tecnologia, 19(3), 241-247. https://doi.org/10.1590/S0104-14282009000300013
  14. Hamzah, H.M., Osman, A., Tan, C.P., & Ghazali, F.M. (2013). Carrageenan as an alternative coating for papaya (Carica papaya cv. Eksotika). Postharvest Biology and Technology, 75, 142–146. https://doi.org/10.1016/j.postharvbio.2012.08.012
  15. Hernández-Muñoz, P., Almenar, E., Del Valle, V., Velez, D., & Gavara, R. (2008). Effect of chitosan coating combined with postharvest calcium treatment on strawberry (Fragaria× ananassa) quality during refrigerated storage. Food Chemistry, 110(2), 428-435. https://doi.org/10.1016/j.foodchem.2008.02.020
  16. Hernández-Muñoz, P., Almenar, E., Ocio, M.J., & Gavara, R. (2006). Effect of calcium dips and chitosan coatings on postharvest life of strawberries (Fragaria x ananassa). Postharvest Biology and Technology, 39(3), 247-253. https://doi.org/10.1016/j.postharvbio.2005.11.006
  17. ISO 4833-1. (2013). Microbiology of the food chain -Horizontal method for the enumeration of microorganisms -Part 1: Colony count at 30 °C by the pour plate technique. 1st. Edition. 9 pages. (In Persian)
  18. ISO 21527-1. (2008). Microbiology of food and animal feeding stuffs - Horizontal method for the enumeration of yeasts and molds -Part 1: Colony count technique in products with water activity greater than 0.95. 1st. Edition. 8 pages. (In Persian)
  19. Istúriz-Zapata, M.A., Hernández-López, M., Correa-Pacheco, Z.N., & Barrera- Necha, L.L. (2020). Quality of cold-stored cucumber as affected by nanostructured coatings of chitosan with cinnamon essential oil and cinnamaldehyde. LWT - Food Science and Technology, https://doi.org/10.1016/j.lwt.2020.109089
  20. Karathanos, V.T., Mourtzinos, I., Yannakopoulou, K., & Andrikopoulos, N.K. (2007). Study of the solubility, antioxidant activity and structure of inclusion complex of vanillin with β-cyclodextrin. Food Chemistry, 101(2), 652-658. https://doi.org/10.1016/j.FOODCHEM.2006.01.0537
  21. Koseki, S., Kyoichiro, Y., Seiichiro, I., & Kazuhiko, I. (2004). Efficacy of acidic electrolyzed water for microbial decontamination of cucumbers and strawberries. Journal of Food Protection, 67, 1247-1251. https://doi.org/10.4315/0362-028X-67.6.1247
  22. Krzemiski, A., Marudova, M., Moffat, J., Noel, T.R., Parker, R., & Welliner, N. (2006). Deposition of pectin/ poly-l- lysine multilayers with pectin of varying degrees of esterification. Biomacromolecules, 7(2), 498-506. https://doi.org/10.1021/bm0507249
  23. Li, M., Yu, H., Xie, Y., Guo, Y., Cheng, Y., Qian, H., & Yao, W. (2021). Effects of double layer membrane loading eugenol on postharvest quality of cucumber. LWT, 145, 111310. https://doi.org/10.1016/j.lwt.2021.111310
  24. Lin, D., & Zhao, Y. (2007). Innovations in the development and application of edible coatings for fresh and minimally processed fruits and vegetables. Comprehensive Reviews in Food Science and Food Safety, 6(3), 60-75. https://doi.org/10.1111/j.1541-4337.2007.00018.x
  25. Maleki, G., Sedaghat, N., Woltering, E.J., Farhoodi, M., & Mohebbi, M. (2018). Chitosan-limonene coating in combination with modified atmosphere packaging preserve postharvest quality of cucumber during storage. Journal of Food Measurement and Characterization, 12, 1610-1621. https://doi.org/10.1007/s11694-018-9776-6
  26. Mantilla, M., Castel-Perez, M.E., Gomes, C., & Moreira, R.G. (2013). Multilayered antimicrobial edible coating and its effect on quality and shelf -life of fresh cut pineapple (Ananas comosus). LWT-Food Science and Technology, 51, 37-43. https://doi.org/10.1016/j.lwt.2012.10.010
  27. Martinon, M.E., Moreira, R.G., Castel-Perez., & Gomes, C. (2014). Development of a multilayered antimicrobial edible coating for shelf-life extension of fresh-cut cantaloupe (Cucumis melo) stored at 4º. LWT - Food Science and Technology, 56, 341-350. https://doi.org/10.1016/j.lwt.2013.11.043
  28. Marudova, M., Lang, S., Brownsey, G.J., & Ring, S.G. (2005). Pectin–Chitosan multilayer formation. Carbohydrate Research, 340, 2144–2149. https://doi.org/10.1016/j.carres.2005.07.004
  29. McGuire, R. (1992). Reporting of objective color measurements. Hortscience, 27(12), 1254-1255.
  30. Mohammadian, M., Waly, M.I., Moghadam, M., Emam-Djomeh, Z., Salami, M., & Moosavi-Movahedi, A.A. (2020). Nanostructured food proteins as efficient systems for the encapsulation of bioactive compounds. Food Science and Human Wellness, 9(3), 199-213. https://doi.org/10.1016/j.fshw.2020.04.009
  31. Mohammadi, A., Hashemi, M., & Hosseini, S.M. (2016). Postharvest treatment of nanochitosan-based coating loaded with Zataria multiflora essential oil improves antioxidant activity and extends shelf-life of cucumber. Innovative Food Science &Emerging Technologie, 33, 580-588. https://doi.org/10.1016/j.ifset.2015.10.015
  32. Moalemiyan, M., & Ramaswamy, H.S. (2012). Quality retention and shelf-life extension in Mediterranean cucumbers coated with a pectin-based film. Journal of Food Research, 1(3), 159-168. https://doi.org/10.5539/ JFR.V1N3
  33. Mourtzinos, I., Kalogeropoulos, N., Papadakis, S.E., Konstantinou, K., & Karathanos, V.T. (2008). Encapsulation of nutraceutical monoterpenes in β-Cyclodextrin and modified starch. Journal of Food Science, 73(1), 89-94. https://doi.org/10.1111/j.1750-3841.2007.00609.x
  34. Omoba, O.S., & Onyekwere, U. (2016). Postharvest physicochemical properties of cucumber fruits (Cucumber sativus) treated with chitosan-lemon grass extracts under different storage durations. African Journal of Biotechnology, 15(50), 2758-2766. https://doi.org/10.5897/AJB2016.15561
  35. Pérez-Santaescolástica, C., Munekata, P.E., Feng, X., Liu, Y., Bastianello Campagnol, P.C., & Lorenzo, J.M. (2020). Active edible coatings and films with Mediterranean herbs to improve food shelf-life. Critical Reviews in Food Science and Nutrition. https://doi.org/10.1080/10408398.2020.1853036
  36. Rabea, E.I., Badawy, M.E.T., Stevens, C.V., Smagghe, G., & Steurbaut, W. (2003). Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules4(6), 1457-1465. https://doi.org/10.1021/bm034130m
  37. Rajabi, H., Ghorbani, M., Jafari, S.M., Mahoonak, A.S., & Rajabzadeh, G. (2015). Retention of saffron bioactive components by spray drying encapsulation using maltodextrin, gum Arabic and gelatin as wall materials. Food Hydrocolloids, 51, 327-337. https://doi.org/10.1016/j.foodhyd.2015.05.033
  38. Sarker, A., Deltsidis, A., & Grift, T.E. (2021). Effect of Aloe vera gel-carboxymethyl cellulose composite coating on the degradation kinetics of cucumber. Journal of Biosystems Engineering, 46, 112-118.
  39. Serna‐Escolano, V., Serrano, M., Valero, D., Rodríguez‐López, M.I., Gabaldón, J.A., Castillo, S., & Martínez‐Romero, D. (2019). Effect of thymol and carvacrol encapsulated in Hp‐β‐Cyclodextrin by two inclusion methods against Geotrichum citriaurantii. Journal of Food Science, 84(6), 1513-1521. https://doi.org/10.1111/1750-3841.14670
  40. Simionato, I., Domingues, F.C., Nerín, C., & Silva, F. (2019). Encapsulation of cinnamon oil in cyclodextrin nanosponges and their potential use for antimicrobial food packaging. Food and Chemical Toxicology, 132, 110647.
  41. Smith, R.L., Cohen, S.M., Doull, J., Feron, V.J., Goodman, J.I., Marnett, L.J., & Adams, T.B. (2005). A procedure for the safety evaluation of natural flavor complexes used as ingredients in food: essential oils. Food and Chemical Toxicology, 43(3), 345-363. https://doi.org.1016/j.fct.2004.11.007
  42. Shahdadi Sardo, A., Sedaghat, N., Taghizadeh, M., & Milani, E. (2017). Effect of packaging type and chitosan edible coating on the physico-chemical and sensory characteristics of Royal greenhouse cucumber during storage conditions. Iranian Food Science and Technology Research Journal, 13, 2(42), 363-378. (In Persian). https://doi.org/10.22067/ifstrj.v1395i0.41901
  43. Turek, C., & Stintzing, F.C. (2013). Stability of essential oils: a review. Comprehensive Reviews in Food Science and Food Safety, 12(1), 40-53. https://doi.org/10.1111/1541-4337.12006

 

CAPTCHA Image