Food Biotechnology
Behrooz Alizadeh Behbahani; Mostafa Rahmati-Joneidabad; Mohammad Noshad
Abstract
IntroductionThe use of safe ingredients to preserve food is steadily increasing. The high time and cost of production and approval of synthetic food additives and the reduction of public acceptance of these compounds have caused serious problems in their utilization. Excessive use of synthetic preservatives, ...
Read More
IntroductionThe use of safe ingredients to preserve food is steadily increasing. The high time and cost of production and approval of synthetic food additives and the reduction of public acceptance of these compounds have caused serious problems in their utilization. Excessive use of synthetic preservatives, which some of them are suspected to be toxic, has completely eliminated these additives and led to the use of natural alternatives to preserve or extend the shelf life of food products. Many plant-based bioactive compounds are good alternatives to synthetic antimicrobial and antioxidant supplements. Plant extracts have significant biological activity including antioxidant, antibacterial, and antifungal properties, which has increased their use in food products. In addition, plant-derived antimicrobial compounds have been considered in the pharmaceutical industry to control microbial pathogens. Natural antioxidant and antimicrobial compounds are receiving a lot of research and industrial attention in food preservation technologies. In the last 2 decades, the use of herbal medicines rich in bioactive molecules (including polyphenols, carotenoids and flavonoids) with medicinal and health effects such as delaying the onset of some diseases such as cardiovascular disorders, diabetes, and cancer have increased.The plant Prosopis farcta grown in arid and semi-arid regions. In Iran, it is found in the southern regions of the country. In traditional medicine, this plant is used to prevent hyperlipidemia and hyperglycemia, to treat hemorrhoids, intestinal diseases and diarrhea, and leprosy, and to reduce abortion. In addition, antimicrobial and antioxidant properties of various species of Prosopis have been reported. Accordingly, in this study, after examining the of total phenols and flavonoids concentrations, the antioxidant and antimicrobial properties of ethanolic extract of Prosopis farcta were determined. Materials and MethodsThe ethanolic extract of P. farcta was obtained maceration method. Total phenol content (by Folin-Ciocalteu reagent method), total flavonoid content (by aluminum chloride method), antioxidant activity (by DPPH and ABTS free radical scavenging and beta-carotene bleaching methods), and antimicrobial effect against Escherichia coli, Shigella dysentery, Staphylococcus aureus, and Bacillus subtilis (by disk diffusion agar, well diffusion agar, minimum inhibitory concentration, and minimum fungicidal concentration) of the extract were evaluated. Results and Discussion farcta ethanolic extract showed high phenol content (145.58 ± 1.30 mg GAE/g), while its total flavonoid content was 72.37 ± 1.48 mg QE/g. Antioxidant activity of ethanolic extract of melon root using different methods of DPPH and ABTS free radical scavenging and beta-carotene bleaching inhibition were 62.60, 71.82 and 54.50%, respectively. Antibacterial activity of P. farcta ethanolic extract against Escherichia coli, Shigella dysentery, Staphylococcus aureus, and Bacillus subtilis according to disk diffusion agar and well diffusion agar methods showed that the antimicrobial activity of the extract was concentration dependent and Shigella dysentery and Staphylococcus aureus were the most resistant and sensitive bacterial strains to the extract respectively. The minimum inhibitory concentrations of ethanolic extract of P. farcta root for Escherichia coli, Shigella dysentery, Staphylococcus aureus, and Bacillus subtilis were 8, 8, 4 and 4 mg/ml, respectively; while the minimum bactericidal concentrations for these bacteria were 128, 256, 32 and 64 mg/ml, respectively. ConclusionIn the present study, ethanolic extract obtained from the roots of P. farcta was identified as a rich source of phenolic and flavonoid compounds. The ethanolic extract showed effective antimicrobial and antioxidant properties. The results greatly indicated the promising effect of P. farcta root extract against Gram-positive and Gram-negative bacterial species. As the microbial resistance is constantly increasing, ethanolic extract of P. farcta root can be considered as a suitable complementary option to tackle this problem. In addition, the identification of individual components of P. farcta ethanolic extract and their biological functions or their combination with common antioxidant and antimicrobial agents could be the subject of future research.
Food Biotechnology
Mostafa Rahmati-Joneidabad; Behrooz Alizadeh Behbahani; Mohammad Noshad
Abstract
IntroductionStrawberry and grapes are generally infected with pathogenic fungi (e.g., Aspergillus niger, Botrytis cinerea, Rhizopus stolonifera, etc.). Synthetic fungicides are commonly used as the first line of defense against post-harvest pathogens on packaging lines. However, disposal of toxic waste ...
Read More
IntroductionStrawberry and grapes are generally infected with pathogenic fungi (e.g., Aspergillus niger, Botrytis cinerea, Rhizopus stolonifera, etc.). Synthetic fungicides are commonly used as the first line of defense against post-harvest pathogens on packaging lines. However, disposal of toxic waste is a costly process and the hazardous waste causes serious environmental problems. In addition, fungal pathogens have shown a worrying trend of resistance to these fungicides, thus shortening the shelf life of products. Compounds that can be equally effective in controlling pathogens, but preventing or minimizing the waste problems will be inevitable. The large volume of internationally processed agricultural products, as well as the increasing demand for organically produced fruits, emphasizes the need to replace synthetic fungicides with safer and biodegradable alternatives. Natural plant-derived products effectively meet this criterion and have great potential to influence modern agricultural research. Catechins and other polyphenols in green tea show strong antioxidant activity. Also, the antimicrobial activity of green tea extract against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Candida albicans has been reported. Therefore, the present study was performed to prepare the ethanolic extract of green tea and to determine the content of total phenol, total flavonoids, antioxidant activity, and its antifungal effect against Aspergillus niger, Botrytis cinerea, and Rhizopus stolonifer (causing rot in strawberry and grapes). Materials and MethodsFresh green tea leaves were dried at room temperature and then powdered. Then, ethanol (70%) was added to the powdered leaves (solvent to powder ratio of 10:1 v/w) and the mixture was refluxed for 120 min. The resulting mixture was filtered through a filter paper and then concentrated under vacuum and finally dried in an oven.Total phenol content (by Folin-Ciocalteu reagent at 756 nm), total flavonoid content (spectrophotometrically at 510 nm), antioxidant activity (by DPPH and ABTS radical scavenging methods), and antifungal effect (by disk diffusion agar, well diffusion agar, minimum inhibitory concentration, and minimum fungicidal concentration) of the extract were evaluated. Results and DiscussionThe extract contained 175.60 mg GAE /g total phenol and 47.53 mg QE/g total flavonoids and its antioxidant activity using DPPH and ABTS free radical assays was 78.89% and 86.57%, respectively. The results of antifungal activity showed that the diameter of the growth inhibition zone increased significantly with increasing the concentration of the extract, and Botrytis cinerea and Rhizopus stolonifer were the most sensitive and resistant fungal strains to the extract, respectively. The minimum fungicidal concentrations for the strains of Botrytis cinerea and Rhizopus stolonifer were 64 and 512 mg/ml, respectively. ConclusionThe results of the present study showed that the ethanolic extract of green tea could be considered as potential source of natural antioxidant and antifungal agents. The presence of phenolic and flavonoid compounds may be responsible for the antifungal and antioxidant effects of the extract. However, due to the fact that this study was performed with the crude extract of green tea, it is difficult to identify compounds responsible for antifungal and antioxidant activity. On this point, only the separation of the components of the extract allows the detection of antifungal and antioxidant compounds. This study provides a basis for further researches, in particular the use of these antioxidants and antifungal compounds. Green tea extract is especially suitable for products with high sensitivity to lipid oxidation and infection with molds.
Food Biotechnology
Ehsan Safari; Hassan Barzegar; Hossein Jooyandeh; Behrooz Alizadeh Behbahani; Mohammad Noshad
Abstract
Introduction The addition of chemical preservatives increases the shelf life of food products, but prolonged and indiscriminate use of chemical preservatives increases the resistance of microorganisms and the health risks associated with theiruptake. Medicinal plants have a wide variety in the world ...
Read More
Introduction The addition of chemical preservatives increases the shelf life of food products, but prolonged and indiscriminate use of chemical preservatives increases the resistance of microorganisms and the health risks associated with theiruptake. Medicinal plants have a wide variety in the world as well as in Iran. In recent years, the use of natural preservatives such as plant extracts and essential oils, due to their importance and role in controlling the growth of pathogenic microorganisms, has been proposed as an alternative to chemical preservatives. Black pepper is an aromatic medicinal plant. The specific properties of black pepper essential oil, such as its antimicrobial and antioxidant activity, have also been confirmed. Amphotericin B is one of the effective antibiotics for treating infections caused by pathogenic fungi. The mechanism of action of amphotericin B is to destroy fungal cells in such a way that by binding to ergosterol in the cell membrane of fungi, it creates pores and eventually destroys them. One of the most important and common antibiotics used in the treatment of infections caused by pathogenic bacteria is chloramphenicol. This antibiotic is effective against gram-positive and gram-negative bacteria due to its broad spectrum. The aim of this study was to identify bioactive functional groups, antioxidant potential, phenol and total flavonoid compounds and to evaluate the antimicrobial activity of black pepper extract against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus coagulans and Aspergillus niger.Materials and Methods In this study, the antimicrobial effect of black pepper aqueous extract was investigated against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus coagulans and Aspergillus niger by disc diffusion agar, well diffusion agar, minimum inhibitory concentration, and minimum bactericidal concentration methods. Total phenol and flavonoid contents of the species were determined by Folin-Ciocalteu and AlCl3 assays, respectively. Three biochemical assays, namely 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2-azinobis 3-ethyl-benzothiazoline-6-sulfonic acid (ABTS) free radical scavenging and β- caroten/linoleic acid activity systems, were used to evaluate antioxidant activity. Identification of functional groups as well as the structure of organic compounds in black pepper extract was also performed by Fourier transform infrared spectroscopy (FTIR). To evaluate the synergistic effect of black pepper extract in combination with amphotericin B and chloramphenicol antibiotics, Sub-MIC was used. Results and Discussion The peaks observed in aqueous black pepper extract confirmed the presence of O-H (3000-3500 cm-1), C-H (2800-3000 cm-1), C=O (1613.62-1633.52 cm-1) and C-O (100.57-1038.82 cm-1) functional groups of bioactive compounds. The total phenol and flavonoids content of the extract were 45.12 mg GAE/g extract and its flavonoid content was 29.66 mg QUE/g extract which had an important role in its antioxidant activity. The aqueous black pepper extract had remarkable DPPH free radical scavenging activity (IC50=32.37 μg/ml), ABTS free radical scavenging activity (IC50=28.45 μg/ml) and beta-carotene bleaching inhibitory effect (46.45%), revealing the electron/hydrogen donating ability of the essential oil. The results of measuring the antimicrobial activity of extract by disk diffusion and agar well showed that black pepper extract showed more antimicrobial effect on gram-positive bacteria Staphylococcus aureus and Bacillus coagulans than gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa. This could be due to the difference in their cell wall structure. Aspergillus niger is the most sensitive species to aqueous black pepper extract. The minimum inhibitory concentrations of extract for Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus coagulans and Aspergillus niger were equal to 32, 16, 4, 8 and 4 mg/ml, respectively. The minimum bactericidal concentration of black pepper extract for two bacterial species, Escherichia coli and Pseudomonas aeruginosa was more than 512 mg/ml. Also, the minimum bactericidal concentration for Staphylococcus aureus and Bacillus coagulans was 128 and 256 mg/ml, respectively, and 128 mg/ml for Aspergillus niger. The results of interaction of black pepper extract with chloramphenicol antibiotic showed that the Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus were synergistic, but antagonism was observed for the gram-positive Bacillus coagulans.
Food Biotechnology
Behrooz Alizadeh Behbahani; Mohammad Noshad; Mostafa Rahmati-Joneidabad
Abstract
[1]Introduction: Oxidation and food pathogens are considered two important and influential factors affecting food quality and health. Recently, due to the increasing demand for natural products, the application of synthetic preservatives to control microbial growth and lipid oxidation have been decreased ...
Read More
[1]Introduction: Oxidation and food pathogens are considered two important and influential factors affecting food quality and health. Recently, due to the increasing demand for natural products, the application of synthetic preservatives to control microbial growth and lipid oxidation have been decreased significantly. Therefore, natural antioxidant and antimicrobial compounds are receiving more attention in food preservation technologies. In the last 2 decades, the use of herbal medicines rich in bioactive molecules (including polyphenols, carotenoids and flavonoids) with medicinal and health effects such as delaying the onset of some diseases such as cardiovascular disorders, diabetes, and cancer have increased. Furthermore, secondary metabolites in plant extracts and essential oils are able to control and inhibit free radical-mediated reactions. The olive tree (Olea europaea) is an evergreen plant that grows in tropical and subtropical regions. Iran is one of the most important olive growers in the world due to its suitable conditions for olive cultivation. The leaves of the olive plant have a high potential for the production of various products such as tea and extracts. Olive leaf extract can be used as a raw material in the production of various products, due to exhibiting various biological activities such as antimicrobial and antiviral activity, lipid stabilizer, blood pressure regulator, antioxidant activity, and free radical scavenger. The leaves of the olive tree also contain various phenolic compounds, mainly Oleuropein and hydroxytyrosol, with antioxidant and antimicrobial activities. Therefore, in this study, the amount of phenolic and flavonoid compounds of olive leaf ethanolic extract and its antioxidant effect and antimicrobial properties on Escherichia coli, Enterobacter aerogenesis, Bacillus cereus and Listeria innocua were investigated. Materials and Methods: The olive leaf ethanolic extract was prepared through maceration method and its total phenolic content (Folin-Ciocalteu method), total flavonoids content (aluminum chloride colorimetric assay), antioxidant activity (ABTS and DPPH free radical scavenging methods), and antimicrobial effect on E. coli, E. aerogenesis, B. cereus and L. innocua (based on disk diffusion agar, well diffusion agar, minimum inhibitory concentration, and minimum bactericidal concentration) were determined according to standard methods. Data were analyzed by SPSS software through one-way ANOVA and Duncan test at p<0.05. Results and Discussion: The ethanolic extract of olive leaves contained 176.58 ± 0.72 mg GAE/g total phenol and 69.85 ± 0.26 mg QE/g total flavonoids. In addition, ethanolic extract of olive leaf was able to inhibit free radicals DPPH (70.62 ± 0.59%) and ABTS (76.15 ± 0.43%). The antimicrobial results showed that the antimicrobial effect of the extract depended on its concentration and type of bacteria. Antimicrobial effect was increased as a function of ethanolic extract, and Gram-positive bacteria (B. cereus and L. innocua) were more sensitive to ethanolic extract of olive leaf than Gram-negative bacteria (E. aerogenesis and E. coli). Generally, B. cereus and E. aerogenesis were the most sensitive and resistant microbial strains to ethanolic extract of olive leaf, respectively.The results of this study showed that the high antioxidant and antimicrobial activity of olive leaf ethanolic extract is mainly due to its phenolic and flavonoid compounds. Olive leaf ethanolic extract was able to neutralize DPPH and ABTS free radicals. Also, Gram-positive bacteria were more sensitive to ethanolic extract of olive leaf than Gram-negative bacteria. In general, the ethanolic extract of olive leaf can be used as a nutraceutical to control or prevent the growth of spoilage/infection-causing microorganisms and free radical reactions in food and the human body. However, more in-depth studies are needed to determine the mechanism of antimicrobial and antioxidant effects of olive ethanolic extract in vitro and in vivo.
Food Biotechnology
Mostafa Rahmati-Joneidabad; Behrooz Alizadeh Behbahani; Mohammad Noshad
Abstract
[1]Introduction: Economic losses can occur due to the growth of fungi on foods that lead to food spoilage and plant diseases. Fruits and vegetables are often exposed to microbial activity, caused by pathogenic fungi, during post-harvest storage. Diseases of food origin are a growing public health problem. ...
Read More
[1]Introduction: Economic losses can occur due to the growth of fungi on foods that lead to food spoilage and plant diseases. Fruits and vegetables are often exposed to microbial activity, caused by pathogenic fungi, during post-harvest storage. Diseases of food origin are a growing public health problem. Thus, food safety has become a major public concern as microbial contamination increases the risk of foodborne illnesses and shortens the shelf life of foods. Infection with fungi such as Aspergillus, Rhizopus, and Penicillium species is considered as the primary cause of rapid spoilage of fresh produce, which reduces their quality and shelf life. Synthetic fungicides have been applied to solve this problem for many years. Nonetheless, the adverse effects of synthetic chemicals on human health and the emergence of fungicide-resistant strains have motivated the scientists and food industries to find out safe preservatives to control postharvest rot/diseases. On this point, natural antimicrobial agents such as plant extracts and essential oils are gaining more and more interest. In this study, we used Levisticum officinale Koch essential oil, which its antimicrobial and antioxidant activity has been reported in literatures. Materials and Methods: L. officinale Koch essential oil was obtained by hydrodistillation method and its total phenol content, total flavonoids, antioxidant activity (based on DPPH and ABTS free radical scavenging and β-carotene bleaching tests) and its antifungal effect against fungi causing apple and orange rotting (Alternaria alternata, Penicillium expansum, Penicillium digitatum, Penicillium italicum, and Botrytis cinerea) were examined according to antimicrobial tests of disk diffusion agar, well diffusion agar, minimum inhibitory concentration, and minimum fungicidal concentration. Results and Discussion:L. officinale Koch essential oil contained 61.27 ± 0.34 mg GAE/g and 20.14 ± 0.21 mg QE/g total phenol and flavonoids, respectively. Its antioxidant activity, based on DPPH free radical scavenging, ABTS free radical scavenging, and β-carotene bleaching inhibition were 69.72 ± 0.65%, 78.54 ± 0.3% and 57.50 ± 0.41%, respectively. L. officinale Koch essential oil was effective against all fungal species and the highest susceptibility was observed for Penicillium expansum. According to the results, L. officinale Koch essential oil can be used as a natural antifungal agent to prevent post-harvest diseases of fruits and vegetables.
Mohsen Ebrahimi Hemmati Kaykha; Hossein Jooyandeh; Behrooz Alizadeh Behbahani; Mohammad Noshad
Abstract
[1]Introduction: Oxidative reactions are needed for human survival, but these reactions can sometimes be destructive. There is a lot of evidence that shows many disorders (neurological, renal, hepatic) and diseases such as cancer and vascular diseases, and even food spoilage are caused by oxidative reactions ...
Read More
[1]Introduction: Oxidative reactions are needed for human survival, but these reactions can sometimes be destructive. There is a lot of evidence that shows many disorders (neurological, renal, hepatic) and diseases such as cancer and vascular diseases, and even food spoilage are caused by oxidative reactions of free radicals. Some types of reactive oxygen species, such as oxygenated water, and free radicals such as hydroxyl and superoxide, can react with certain fats, nucleic acids, and proteins in the body to kill them. In general, any substance that delays or prevents the oxidation process is called an antioxidant. In various studies that have been done so far, the antioxidant and protective properties of the novel plants have been reported. Among other species of medicinal plants, the rosemary plant with the scientific name (Rosmarinus officinalis L.) belongs to the mint family, the leaves of which are used as an additive in many foods. This plant is cultivated in many parts of the world, including Iran, but the main habitat of this plant has been attributed to the shores of the Mediterranean Sea. The purpose of this study was to identify chemical compounds, antioxidant effects, total phenolic and flavonoids contents, and cytotoxicity effect of Rosmarinus officinalis essential oil (ROEO) on colorectal cancer cell line (HT29) and identification of functional groups of ROEO using Fourier transform infrared spectroscopy (FTIR). Materials and methods: In the present study, the analysis of chemical compounds in ROEO was determined by gas chromatography-mass spectrometer (GC-MS). The total phenolic and flavonoid content of ROEO was evaluated using Folin-Ciocalteu and colorimetry using aluminum chloride, respectively. Antioxidant properties of ROEO were evaluated by DPPH and ABTS methods. The cytotoxic effect of ROEO on colorectal cancer cell lines (HT29) was evaluated by MTT method. The compositions of the functional groups present in the essential oil were investigated using Fourier transform infrared spectroscopy. Results and discussion: The chemical analysis of ROEO comprised of 29 compounds, which composed 94.22% of total essential oil. The main compound identified in the essential oil used in this study was eucalyptol with 40.13%. Total phenolic content was 72.55 mg gallic acid per gram of essential oil and its flavonoid content was 36 mg QE/g. The ROEO antioxidant activity for both DPPH and ABTS tests were 78.74% and 81.97%, respectively. The results of cytotoxic effect of ROEO showed that the cytotoxic effect of ROEO was highly dependent on its concentration. The higher the concentration of essential oil, the higher the level of cytotoxicity. Fourier transform infrared spectroscopy analysis confirmed the presence of aldehyde compounds, ketones, carboxylic acids, esters and alkenes. The results of all ROEO tests showed that this essential oil can be used as a potential source in the pharmaceutical, food, cosmetic and health industries.
Food Biotechnology
Zohreh Sosani Gharibvand; Behrooz Alizadeh Behbahani; Mohammad Noshad; Hossein Jooyandeh
Abstract
Introduction: Nowadays, production and utilization of Nano materials have increased due to their unique and interesting properties. So far, different physical and chemical methods have been used to synthesize silver nanoparticles. Chemical synthesis is not compatible due to the hazardous chemicals residues ...
Read More
Introduction: Nowadays, production and utilization of Nano materials have increased due to their unique and interesting properties. So far, different physical and chemical methods have been used to synthesize silver nanoparticles. Chemical synthesis is not compatible due to the hazardous chemicals residues on the surface of the nanoparticles (NP) as well as production of by products with high impact on the environment. Physical routes for synthesis of NPs have some drawbacks, too. These methods require high energy and space, and are expensive. Therefore, biological methods for the synthesis of silver nanoparticles are considered emerging technologies as economic choices in the green chemistry field. Among these methods, plant-mediated synthesis of AgNPs is a rapid, simple, non-toxic and eco-friendly technique. Silver nanoparticles exhibit high bactericidal activity at their utilized concentrations with no toxic effect on human cells, and they also strongly enhance the antibacterial activity of conventional antibiotics even against multi-resistant bacteria through their synergistic effects. Callistemon citrinus belongs to the family Myrtaceae and includes more than 30 species. The plant is widespread in wet tropics, notably Australia, South America and tropical Asia, but presently can be found all over the world. Callistemon citrinus is a potential medicinal plant used to treat gastrointestinal distress, pain, and infectious diseases caused by bacteria, fungi, viruses, and parasites. In this study Callistemon citrinus aqueous extract was used to reduce silver ions in silver nitrate solution. In the following, the antimicrobial activity of nanoparticles synthesized by various qualitative and quantitative methods on Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Salmonella typhi and Listeria innocua was investigated. Materials and Methods: For the synthesis of silver nanoparticles, 25 mL of silver nitrate solution was added to 5 mL of leaf extract with a concentration of 100 mg/mL and maintained for 24 h at 20 °C. Change the color of the solution to Red represents the production of silver nanoparticles in the solution. To stabilize the presence of silver nanoparticles, the absorption spectrum of silver nanoparticles produced by spectrophotometer was prepared. Antimicrobial activity of silver nanoparticles synthesized using Callistemon citrinus leaf aqueous extract was examined by disc diffusion agar, well diffusion agar, minimum inhibitory concentration (microdilution broth) and minimum bactericidal concentration on Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Salmonella typhi and Listeria innocua. Results and Discussion: The results showed that in disc diffusion agar method, the diameter inhibition zone increased with increasing the concentration of silver nanoparticles. The maximum effect of silver nanoparticles synthesized using Callistemon citrinus leaf aqueous extract at a concentration of 150 mg / ml was observed for Pseudomonas aeruginosa. An inhibition zone was observed for all examined pathogenic microorganisms at all concentrations. The results showed that in the well diffusion agar method, nanosilver particles at a concentration of 18.75 mg/ml did not show any inhibitory effect on all the pathogenic microorganisms. The results of statistical analysis showed that there was no significant difference between all the concentrations of silver nanoparticles synthesized for Escherichia coli, Salmonella typhi and Staphylococcus aureus (P˂ 0.05(. The MIC for Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Salmonella typhimurium and Listeria innocua was 128, 256, 256, 256 and 512 mg/mm, respectively. The MBC for all the pathogenic strains was 512 mg/mm. The results of this study showed that the Callistemon citrinus leaf extract has a good ability to synthesize silver nanoparticles. Nanoparticles synthesized from Callistemon citrinus leaf extract had good antimicrobial activity against examined pathogenic bacteria, especially Gram-negative bacteria. Green-synthesized nanoparticles can be used as antimicrobial agent to fight infectious diseases caused by various microbial strains, although more research is needed in vitro, animal models and in vivo.
Food Biotechnology
Elahe Isvand Heydari; Hossein Jooyandeh; Mohammad Hojjati; Behrooz Alizadeh Behbahani; Mohammad Noshad
Abstract
Introduction: Probiotics are viable microbial food supplements that, when well-arranged in adequate amounts, confer a health advantage on the host. Probiotics have different positive health impacts such as equilibration of intestinal microbiota, prevention of cancer and diarrhea, reduction of cholesterol ...
Read More
Introduction: Probiotics are viable microbial food supplements that, when well-arranged in adequate amounts, confer a health advantage on the host. Probiotics have different positive health impacts such as equilibration of intestinal microbiota, prevention of cancer and diarrhea, reduction of cholesterol and blood pressure, adaptation to lactose intolerance, improvement of immune system, decrease of allergic symptoms, inhibition of pathogenic microorganisms etc. Lactic acid bacteria (LAB), are the most common bacteria introduced as probiotics. Materials and methods: In this research, a strain of Lactobacillus planetarium LZ95 was utilized and its probiotic potential was evaluated. This strain had been isolated from a traditional Iranian fermented food known as Ash-Kardeh and had been identified using culture-dependent methods and molecular techniques. Lactobacillus planetarium, is one of the known LAB bacteria. The aim of this study was to evaluate the probiotic potential of Lactobacillus plantarum LZ95 in relation to its resistance to acid (pH 2.5, 3.5 and 5.5), its ability to grow in different bile salt concentrations (0.2, 0.5, 0.8, 1.2 and 3%), its resistance against chloramphenicol, tetracycline, penicillin and gentamycin antibiotics, and its antimicrobial activity against Listeria innocua, Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli by using “Lawn on the spot” method. Results and discussion: Results shown that the viability of Lactobacillus plantarum ranged from 0 to 97.69 percent. The highest and the lowest bacteria viability were determined at pH=5 and 2, respectively. The results revealed that Lactobacillus plantarum was able to grow at all tested bile salt concentrations (0.2, 0.5, 0.8, 1.2 and 3%), and the lowest and the highest viability was found at 0.2 and 3 percent of bile salt levels, respectively. Lactobacillus plantarum was susceptible to all tested antibiotics. Results also shown that chloramphenicol with an inhibition zone diameter of 30.10 mm had the highest anticipation effect on the strain. Antimicrobial activity of Lactobacillus plantarum against Staphylococcus aureus (gram positive) and Escherichia coli (gram negative) with inhibition zone diameters of 11.30 and 7 mm was the highest and the lowest, respectively. The inhibition zone diameter around the strain of Lactobacillus plantarum revealed its ability to inhibit the growth of selected pathogenic bacteria. Based on results, the inhibition zone diameter against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Listeria innocua were 11.30, 7.00, 10.70, and 8.90 mm, respectively. In general, the isolated strain of Lactobacillus planetarium LZ95 had an acceptable probiotic potential such as resistance to bile salt and acidic conditions, susceptibility to some commonly antibiotics, and appropriate antimicrobial activity against food pathogenic bacteria. Therefore, this strain can be used in food industry to produce functional food products.
Food Engineering
Mohammad Noshad; Moslem Savari; Reza Ghorani; Dalal Albosharib
Abstract
Fungal toxins, mycotoxins such as aflatoxins, are compounds produced by different fungi during the growth and reproduction period. The most important fungal toxins that jeopardize human health are aflatoxins, which are produced by Aspergillus fungi and can grow in all crops. With toxic and carcinogenic ...
Read More
Fungal toxins, mycotoxins such as aflatoxins, are compounds produced by different fungi during the growth and reproduction period. The most important fungal toxins that jeopardize human health are aflatoxins, which are produced by Aspergillus fungi and can grow in all crops. With toxic and carcinogenic effects of aflatoxins, many studies were performed using different methods to eliminate or reduce the amount of aflatoxin in cereals and nuts. On the contrary, using different methods for reducing aflatoxins in cereals and nuts make it impossible or difficult for researchers who study one or few related articles. This paper was conducted to review, investigate and do a meta-analysis on the results of the studies conducted and aimed to answer this general question as by which method can further reduce the amount of aflatoxin in cereals and nuts. Results showed that the methods of UV-irradiation, Ozone & UV irradiation and citric acid were the most important methods by 0.469, 0.441, and 0.427 of effect size respectively.
Negin Zangeneh; Hassan Barzegar; Mohammad Amin Mehrnia; Mohammad Noshad; Mohammad Hojjati
Abstract
Introduction: Celiac is an autoimmune digestive disorder caused by the consumption of gluten and the only way of treatment is consuming gluten free diet. Cake fortification due to its high consumption is pursuing by the bakery industry and the application of dietary fibers is increasing due to its relation ...
Read More
Introduction: Celiac is an autoimmune digestive disorder caused by the consumption of gluten and the only way of treatment is consuming gluten free diet. Cake fortification due to its high consumption is pursuing by the bakery industry and the application of dietary fibers is increasing due to its relation to human health. In this research, the effect of adding different parts of oleaster (core powder, peel and flesh powder and whole powder) at different concentrations (5, 10 and 20%), on physicochemical and sensory properties of gluten free cakes were investigated. Flour structure, functional properties, unique taste, dietary fiber, minerals and phenolic content of oleaster has made it a good ingredient in bakery products, yoghurt, ice cream, baby foods, chocolate and cookies. Oleaster due to the high content of fiber and minerals could be used in preparing gluten free functional foods. Due to the high demand for gluten free products for celiac patients, our goal was formulation optimization of gluten free cake based on corn flour and oleaster. Materials and methods: Corn flour (Tarkhineh, Tehran), sugar (Zarin Alborz), vanilla and baking powder (Bartar Co.), egg (Telavang), sunflower oil (Ladan) and oleaster were purchased from a local shop in Ahvaz. After cleaning and removing impurities of oleasters, peel, flesh and core were separated, grinded and passed through mesh no. 35. Samples were kept in plastic bags at room temperature. Corn flour was partially (5, 10 and 20%) substituted with Powder of core, peel, flesh and whole oleaster. Moisture, pH, fat, protein, fiber, specific volume, textural properties, color and sensory properties of cakes were determined. Data were analyzed using a completely randomized design in SPSS and graphs were plotted using Excel. Results and discussion: Low nutritional value and low diversity of gluten free products are major problems for celiac patients. Food scientists are trying to increase the nutritional value of such products through the addition of functional ingredients. Results of the present research showed a significant effect of adding oleaster powder on the physicochemical and sensory properties of free gluten cake samples. By increasing oleaster powder, moisture content of cake samples was increased and the highest moisture content was seen in samples containing peel and flesh powder which is due to presence of hygroscopic constituents like fibers and sugars. The addition of oleaster powders was significantly increased ash of samples which is due to the higher mineral content of oleaster comparing to corn flour. Evaluation of the browning index showed a significant effect of oleaster powder. Crust browning index increased by increasing the powder level in all types of cake samples. The highest browning index was seen in samples containing 20% core powder and the lowest was in the control. The browning index increased because of a rising Maillard reaction due to the higher amount of monosaccharides in oleaster powder. By increasing oleaster powder, firmness of samples increased and the lowest and highest firmness was seen in samples containing peel and flesh and core powder respectively. During storage time, by rising oleaster powder level, firmness increased. A significant increase of firmness was due to decrement of volume and thickening air bubbles walls in cakes crumb. By increasing oleaster powder in cakes, fat and protein content decreased and fiber increased. The lowest fat content was seen in samples containing 20% core powder. Sensory evaluation of cakes approve that oleaster powder could be used as a functional ingredient in cake formulations due to its nutritional and functional properties.
Mohammad Noshad; Abbas Mirzaei; Sahar Asgharipour
Abstract
In this study, the fuzzy hierarchical analysis (FAHP) and TOPSIS methods was used to select the best formulations of gluten-free baguette contain modified quinoa flour (QM). For this purpose, two criteria, namely physical and chemical properties (with sub-criteria of texture, taste, flavor, color, porosity, ...
Read More
In this study, the fuzzy hierarchical analysis (FAHP) and TOPSIS methods was used to select the best formulations of gluten-free baguette contain modified quinoa flour (QM). For this purpose, two criteria, namely physical and chemical properties (with sub-criteria of texture, taste, flavor, color, porosity, moisture, ash and mineral content, fiber content and antioxidant activity) were used to evaluate the best formulation of gluten-free of baguette. Incorporating QM from 0 to 15% increased moisture content, fiber content, hardness, antioxidant activity, a* value, Fe+2 and Ca+2 content and decreased L* and b* values. Results of FAHP-TOPSIS method showed the chemical properties have a relatively higher importance compared to the physical properties of the product and the highest importance degree of product quality evaluation is for fiber content and antioxidant activity with a final weight of 0.271 and 0.239, respectively. Also, from the experts’ point of view and based on the sub-criteria, baguette containing 10% QM with a proximity index of 0.871 was selected as the best formulation.
Fatemh Eivani; Behzad Nasehi; Mohammad Noshad; Hassan Barzegar
Abstract
Introduction: Increasing the demand for purchase and use of high quality products with good health benefits has led to a lot of efforts to increase and maintain the quality of different products. Sponge cake is one of the cereal products that the stale and lack of dietary fiber in cake flour is one of ...
Read More
Introduction: Increasing the demand for purchase and use of high quality products with good health benefits has led to a lot of efforts to increase and maintain the quality of different products. Sponge cake is one of the cereal products that the stale and lack of dietary fiber in cake flour is one of the major problems in this product. Cake is one of the flour mills and is intermediate in terms of calorie content of bread and biscuits. This high-consumption product has many fans among children and adolescents. Given the fact that this group of people is in the age of growth and healthy and nutritious nutrition will play a significant role in their health, the enrichment of all kinds of cakes is among the most important issues. Since the predominant promise is low-value and even unattractive and with high calories, it only causes obesity and cardiovascular disease. Recently, the use of fruit and vegetable waste has become widespread to reduce environmental pollution. Considering that these lesions are important sources of polyphenols. Industrial and agricultural residues are sources of natural antioxidants and food fibers. The functional properties of some skin components, such as pectin, flavonoids, carotenoids, lemonies, and poly-methoxyflavones, should be taken into account. Nowadays, cake producers have a major problem with lipid oxidation, which limits the shelf life of their products. Bakery products such as cakes, especially those with high fat content, tend to become corrosive after prolonged storage due to unsaturated fatty acids. Special attention has been paid to the use of natural antioxidants to minimize the use of synthetic additives. In recent years, the growing trend of bakeries with nutritional value such as rich fiber has been observed. In order to increase fiber content in cake and muffins, several raw materials such as bran, outer layers of grains have been used. Materials and methods: Pomegranate was purchased freshly from the market, then the seeds were separated, then the samples were dewatered and the cores were dried at 30 ° C for 2 days. The pomegranate cores were dried after milling and after passing the sieve with the mesh 35 was used. The dough was prepared and the pomegranate and xanthan gum flour was added to the dough. The prepared dough was poured into the mold, then the molds were bake for 30 minutes in an oven at 175 ° C. Cakes were then stored after leaving the oven and cooled in polyethylene packages at room temperature until further tests were performed. An image processing method was used to check the porosity and color of the crust and crumb of enriched cakes. For this purpose, the imaging was carried out in a special box with a uniform white light at all directions and from a fixed distance with the Canon Power Shot P500 Canon Camera. Pictures are saved in JPG format. To get the same levels from each image, Adobe Photoshop CS4 (Photoshop CS6) was designed with 457 x 504 pixels for the brain and skin. To colorize the samples, the RGB color space was converted by Image J software to * L,*a, and *b. In this research, the effect of replacing wheat flour with pomegranate powder (0-50%) and xanthan gum (0 to 0.3%) on the physico-chemical (Moisture, pH, ash, porosity, volume index, fiber and protein), qualitative (Density, stiffness, weight loss, symmetry, volume, color and durability) and sensory properties of cake were evaluated using the response surface method in the form of a composite design. Results and discussion: The results of this study showed that increasing the replacement of pomegranate powder has a positive and significant effect on fiber content, protein and weight loss and negative effect on density properties, texture stiffness, symmetry, volume index, color indices, the overall acceptance and flavor of the samples. Also, increase in the percentage of xanthan gum has a positive and significant effect on density, texture stiffness, volume, porosity, and volume index and weight loss of samples. In general, the evaluation of all characteristics showed that the cake sample containing 0.1% gum and 22.22% pomegranate powder had the best quality. On the other hand, comparing the optimal sample and the control indicates that the replacement of pomegranate powder has increased the phenolic compounds and reduced peroxide value.
Mohammad Noshad; Behrooz Alizadeh Behbahani; Parisa Ghasemi
Abstract
In this study, the effect of thermal treatments (roasting and autoclave) and non-thermal treatments (soaking and germination) on total phenolic content, total flavonoid content, antioxidant activity and bioavailability of minerals of chia seed was evaluated. Results showed thermal treatments increased ...
Read More
In this study, the effect of thermal treatments (roasting and autoclave) and non-thermal treatments (soaking and germination) on total phenolic content, total flavonoid content, antioxidant activity and bioavailability of minerals of chia seed was evaluated. Results showed thermal treatments increased the total phenolic content in samples such that the total phenolic content increased from 0.95± 0.1 mg (GAE/g) (control sample) to1.32± 0.12 mg (GAE/g) (roasted sample) and 1.11± 0.1 mg (GAE/g) (autoclaved sample). Soaking reduced the total phenolic content in samples while germination increased the amount of total phenolic content in the samples. Using the roasting treatment had no significant impact on the total flavonoid content of samples, while using the autoclave, soaking and germination treatments reduced the total flavonoid content of samples. Roasting and autoclaving increased the antioxidant activity of samples while soaking reduces the amount of antioxidant activity among the samples and germination had no considerable effect on the antioxidant activity of samples. Moreover, germination treatment increased the macro and micro elements of minerals in samples. Thermal treatment (roasting) had no significant impact on the amount of minerals and only increased the Fe2+ in samples. FTIR Spectra showed thermal treatment reduced the amount of polysaccharide (1740 -1750 cm-1) and protein /lipid (2800-3000 cm-1) in samples.
Marzieh Omidi Mirzaei; Mohammad Hojjati; Behrooz Alizadeh Behbahani; Mohammad Noshad
Abstract
Introduction: Essential oils and secondary metabolites of plants have too many uses in medicine as well as food and hygiene industries. The herbal essential oils include different health features including antioxidant and antibacterial activities. Several forms of the activated oxygen, also known as ...
Read More
Introduction: Essential oils and secondary metabolites of plants have too many uses in medicine as well as food and hygiene industries. The herbal essential oils include different health features including antioxidant and antibacterial activities. Several forms of the activated oxygen, also known as reactive oxygen species (ROS), include free radicals and non-free radical species. In traditional Iranian medicine, coriander seeds are widely used to treat the disease. The objectives of this paper were to identify the chemical compounds and to measure the phenol content and the antioxidant potential of coriander seed essential oil in addition to its free radical scavenging activity. The other aim of this work was to investigate the antimicrobial of coriander seed essential oil on Bacillus cereus, Salmonella typhi, Escherichia coli and Pseudomonas aeruginosa “in vitro”. Materials and methods: In this research, the coriander seed essential oil (100 g) was extraction using water-distillation method with clevenger apparatus. Afterwards, coriander seed essential oil was collected in vials which had already been weighed by a 0.0001 balance and stored at 4 °C until testing. Chemical composition of coriander seed essential oil was determined using gas chromatography. The antioxidant activity was determined by 2,2’-azinobis (3-ethylbenzothiazoline-6-sulphonic acid) di-ammonium salt (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicles, respectively. The method of Folin-Ciocalteu was performed through determination of TPC. The result was reported as mg of gallic acid/g of the dried coriander seed essential oil. The antioxidant potential of the essential oil was compared with BHA synthetic antioxidant at a concentration of 100 μg/ml. Antibacterial activity of coriander essential oil was determined by disc diffusion agar (Kirby-Bauer test), minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) methods. Results and discussion: Based on the results of chemical analysis, the coriander seed essential oil was rich in oxygenated monoterpenes (89.94%). The main compound of coriander seed essential oil was Linalool (76.75%). The highest percentage of free radical scavenging for DPPH was 53.5% and for ABTS 66.6% at 900 ppm concentration. The total phenol content essential oil was 38.04 ± 0.02 mg GAE/g. The result show that, the most sensitive and the most resistant bacteria with diameter inhibition zone 30.30 mm and 23.15 mm were Bacillus cereus and Salmonella typhi respectively. MIC of coriander seed essential oil for Bacillus cereus, Salmonella typhi, Escherichia coli and Pseudomonas aeruginosa was 2, 4, 4 and 4 mg/ml respectively. MBC of coriander seed essential oil for Bacillus cereus, Salmonella typhi, Escherichia coli and Pseudomonas aeruginosa was 512, > 512, > 512 and 512 mg/ml respectively. In general, the results indicated that the coriander seed essential oil was effective on microorganisms; nevertheless, the extent of its effectiveness varied depending on the type of microorganism. The gram-positive bacteria are more sensitive to essential oil rather than gram-negative ones. The higher resistance of gram-negative bacteria to the essential oils of medicinal plants could be attributed to the more complex structure of the cell membrane of these bacteria compared with the single layer structure of the gram-positive ones. The results of this study revealed that coriander seed essential oil had less antioxidant activity than synthetic antioxidant BHA. Antibacterial activity of the essential oil was higher than the gentamicin antibiotic. Regarding the chemical compositions identified in the coriander seed essential oil, these compositions could be employed as an important economical source uses in medicine as we as food and hygiene industries.
Mohammad Noshad; Mohammad Amin Mehrnia; Nasim Dehghan
Abstract
Introduction: Pectin is a type of water-soluble hetero-polysaccharide that is present in the primary cell wall of plant and is used as a jellying, thickening and stabilizing agent in various food products. The degree of esterification is the most important determinant of the use of pectin in the food ...
Read More
Introduction: Pectin is a type of water-soluble hetero-polysaccharide that is present in the primary cell wall of plant and is used as a jellying, thickening and stabilizing agent in various food products. The degree of esterification is the most important determinant of the use of pectin in the food products, according to pectin is divided into two groups: high-esterification pectin (50% degree of esterification) and pectin with degree low esterification (degree of esterification less than 50 %(. Considering the high use of pectin in the food products, researchers are now looking for new sources of pectin extraction, among which the use of food waste has been considered high, because the waste of food factories is a major challenge for food manufacturers. Eggplant (Solanum melongena) belongs to the Solanaceae family, which is used extensively in the world. The plan species is believed to have originated in India, where it continues to grow in southern and eastern Asia. The skin and warhead of this product, which is discarded as waste, can be used as a valuable source for pectin extraction. The most commonly used methods for pectin extracting are the use of hot water, along with acids, which is a time-consuming process and the waste discard of this method is environmentally problematic. Therefore, the use of new methods such as ultrasound has been considered by researcher to minimize the limitations of the traditional method of pectin extracting. The purpose of this study was to extract pectin from eggplant waste using ultrasound and evaluate its physicochemical properties. Material and methods: The waste of eggplant from restaurant of agricultural sciences and natural resources university of Khuzestan were prepared. The waste was dried in an oven at 60 ºC to reach constant weight. The dried waste was powdered using a grinder and passed through the sieve. The ultrasound was used to extract pectin from eggplant waste (skin and warhead). For this purpose, the effect of ultrasound time (40-80 min) and dry matter /solvent ratio (1:10 – 1:30 g/ml) on extraction efficiency degree of esterification of extracted pectin were investigated. The FTIR (wavelengths scanned 4000-400 cm−1) and rheological behavior were studied to evaluate the performance characteristics of the extracted pectin. Analysis of variance (ANOVA) procedure followed by Duncan’s test using SPSS 16 (SPSS Inc., Chicago, IL, USA) software was applied to determine the significant difference (P < 0.05) between treatment means. Result & discussion: Based on results, increasing the extraction time had a significant effect (P<0.05) on the pectin extraction, so that the increase in extraction time from 40 to 60 min increased the extraction efficiency from 14.05 ±0.21 to 29.35±0.21 (%), which is probably due to the fact that the cavitation causes the cell wall to break down and more solvent penetrates the cell matrix, which results in increased extraction of pectin. The highest efficiency of pectin was obtained in the dry matter /solvent ratio (1:10 g/ml) and 60 min. The highest degree of esterification (84.18 ± 0.1 %) was obtained in the dry matter /solvent ratio (1:20 g/ml) and 60 min. Also, the degree of esterification of the obtained pectin varied from 67.69 ± 0.02 to 84.14 ± 0.1 %), which indicated the high quality of pectin was extracted. Due to the fact that the steric bonds are more unstable than acidic hydrolysis in comparison with glycosidic bonds, the higher degree of esterification indicates less damage to the pectin structure during the extraction process. FTIR showed all of the pectin's specific spectra and abundance of methoxy groups in extracted pectin. The FT-IR spectra show the characteristic absorption of -CH at the ranges of 3000-2800 cm-1 and at 1421 cm-1, while the wide band at 3406 cm–1 was assigned to the -OH stretching vibration. The wide band at the ranges of 1700-1600 cm-1 can be due to the stretching vibrations of the C=O bonds in the backbone of crude polysaccharide because of presence of uronic acid. Existence of a peak at 1200-900 cm-1 indicates that pectin contained multiple vibrations of glycosidic (C–O-C) and pyranoid (C=O) linkages due to the characteristic of the pyranose form of glucosyl residues. The apparent viscosity of the extracted pectin solution decreased with increasing shear rate (0.5 to 10 s-1) while in the higher shear rate (10 to 100 s-1), the apparent viscosity of the pectin solution remained almost constant. This process shows that the produced pectin solution at low shear rate exhibits pseudo plastic behavior, while at highest shear rate exhibits Newtonian behavior. These results indicated that eggplant waste could be used as a good source of high-performance pectin.
Adieh Anvar; Behzad Nasehi; Mohammad Noshad; Hassan Barzegar
Abstract
In the present study, the effects of addition of quince pomace powder (0- 15%) and water content (25- 35%) on the batter rheological properties, physicochemical characterizes and sensory properties of sponge cake were evaluated. The results showed that increasing substitution of quince pomace increased ...
Read More
In the present study, the effects of addition of quince pomace powder (0- 15%) and water content (25- 35%) on the batter rheological properties, physicochemical characterizes and sensory properties of sponge cake were evaluated. The results showed that increasing substitution of quince pomace increased the viscosity and consistency batter and the dietary fiber, firmness, overall acceptability of cake and reduced the moisture content, and density of cake. Results of RSM based desirability function showed cakes formulated with 12.56% of quince pomace powder and 29.62% of water content had the most and desired physicochemical quality. Total phenol content (7.71 mg/g), iron (0.263 mg/Kg dry weight) and calcium (340 mg/Kg dry weight) of the control sponge cake was improved to 8.32 (mg/g), 0.361 (mg/Kg dry weight) and 1160 (mg/Kg dry weight) in the optimal sponge cake, respectively. SEM results showed the quince powder increased in the number of cavities in the cake's structure and the uniformity of these cavities.
Kowsar Kakaei; Mohammad Noshad; Behzad Nasehi; Mohammad Hojjati; Shahram Beiraghi-Toosi
Abstract
Introduction: In the past years, snack consuming in all age groups, special children have increased due to their low cost and eating readiness. Generally, these products have high starch content, but low nutrients such as vitamins, minerals, amino acids and fiber. In fact, most of the snacks are known ...
Read More
Introduction: In the past years, snack consuming in all age groups, special children have increased due to their low cost and eating readiness. Generally, these products have high starch content, but low nutrients such as vitamins, minerals, amino acids and fiber. In fact, most of the snacks are known as foods with high energy content and glycemic index, but low nutritional value. Adding fruits processing by-products to extruded snacks improves the nutritional value of snacks due to their high content of dietary fiber, bioactive compounds and minerals. Pomegranate (Punica granatum L.) is a perennial plant and is generally cultivated in tropical and subtropical regions the pomegranate seed is one of the pomegranate processing by-products including approximately 15-20% of total fruit. Pomegranate seed contains 36.5-42.4% fiber, 13.5-16.9% lipid, 8.5-11.3% protein and 24.09-33.41% carbohydrates. Therefore, pomegranate by-products rich in bioactive compounds and dietary fiber can be used as a functional ingredient. Since no research have been performed on using the pomegranate seed powder in making snacks yet, this research aimed to investigate the effect of pomegranate powders as a fiber supplement on the extruded physicochemical properties.
Material and Methods: The fruit of pomegranate were purchased from Khuzestan province in Iran. After peeling of pomegranate fruits, arils were pressed. The remaining pomaces were dried at 50 C for 48h. Dried pomace was powdered using a mixer grinder. The corn grits (Golden Corn Company, Iran) were prepared. The moisture and chemical component of raw materials were analyzed. The two screw extruders (model DS56, Jinan Saxin Company) was used to formulate and prepare snacks. First, response surface methodology (RSM) was used to optimize the amount of pomegranate powder to be added to the snacks. For this purpose, the influence of adding the pomegranate seed powder (0-20 %), extruder temperature (120-160 °C) and screw rotation speed (120-180 rpm) on the physicochemical properties of extruded samples were considered. For this reason, the moisture level of the input food was adjusted to 15 % and the feeding speed was 40 (kg/hr). The obtained results from optimization of the snacks formulation and process conditions shows that the optimum amount of factors are fallowing addition of fiber supplementary 11.8 %, the temperature of the extruder 160 °C, the screw speed of 147.1 rpm. After preparing optimal and control samples (without adding pomegranate powder), in order to evaluate the addition of pomegranate powder to the physicochemical properties of snacks, for this purpose, the effect of adding pomegranate powder on fat and protein content, total phenolic compounds, antioxidant activity, density, hardness, water and oil absorbance index, solubility index, soluble and in soluble fiber content, moisture content and microstructure of the produced snacks during 60 days of storage were investigated.
Results and discussion: By adding the pomegranate seed powder, the product moisture content decreased, which is probably due to high insoluble fiber content of pomegranate seed powder like apple residue. Moreover, by adding the pomegranate seed powder, the oil absorption index increased, which is probably due to presence of non-polar amino acids in the pomegranate seed powder. Existence of greater quantities of non-polar amino acids and presence of non-polar side chains in the extruded products may absorb oil hydrocarbon chains, leading to increase oil absorption index. Based on results, adding the pomegranate seed powder increases the hardness of the samples, which is probably due to the high amounts of oil and protein in the pomegranate seed powder. Researchers have reported that the use of food ingredients with high fat, protein, and fiber content increase the product tissue hardness. Also, the addition of pomegranate powder reduced water absorption of samples, which is probably due to the presence of insoluble water compounds such as fat and insoluble fibers in pomegranate powder and the reduction in the starch content of the samples due to the replacement of pomegranate powder. According to the results, addition of pomegranate powder increased the total phenol content and antioxidant properties of samples. While increasing the storage time, the total phenol content in the samples was reduced, which is probably due to the oxidation reactions that occur during storage. The results of this study showed that the addition of pomegranate powder increased the density, a * value, and nutritional value (such as iron, zinc, soluble and insoluble fiber, protein and fat content) in samples. While L* and b* values and water activity of the samples was reduced. Also, the addition of pomegranate powder decreased porosity and created heterogeneous and irregular cavities in the texture of snacks.
Simin Ghasemizadeh; Behzad Nasehi; Mohammad Noshad
Abstract
In the study, the effect of compositional parameters (Xanthan, Corn flour and quinoa flour content) on sensory characteristics and image features of gluten free bread were evaluated. Results showed, addition of quinoa and corn flour significantly decreased L* value and increased a* value of crust and ...
Read More
In the study, the effect of compositional parameters (Xanthan, Corn flour and quinoa flour content) on sensory characteristics and image features of gluten free bread were evaluated. Results showed, addition of quinoa and corn flour significantly decreased L* value and increased a* value of crust and crumb of gluten free bread. Also, increased percentage of corn flour has led to decreased amount of FDL* that indicates the area appears less nonhomogeneous on surface of gluten- free bread. The results also showed that using complete flour of quinoa causes softness in bread due to the presence of bran and networking, therefore, resulting in increased contrast, homogeneity and entropy, and decreased energy and correlation of produced breads. The results of sensory analysis showed that all samples containing quinoa flour have higher overall acceptance score than that of the control treatment. Correlation analysis showed a good linear relationship between image features and overall acceptance of gluten- free bread. Results showed that the optimized Adaptive Neuro-Fuzzy Inference System (ANFIS model) provide best accurate prediction method for overall acceptance of gluten-free bread (R2= 0.994 and MSE= 0.0015) and it could be a useful tool in the food industry to design and develop novel products.
Adieh Anvar; Behzad Nasehi; Mohammad Noshad; Hassan Barzegar
Abstract
In this study, microwave drying conditions of quince pomace optimized with respect to quality attributes (moisture content, color change and consumer acceptance). Response surface methodology (RSM) technique was used to develop models to respond to the microwave power (100, 2000, 300 W), and microwave ...
Read More
In this study, microwave drying conditions of quince pomace optimized with respect to quality attributes (moisture content, color change and consumer acceptance). Response surface methodology (RSM) technique was used to develop models to respond to the microwave power (100, 2000, 300 W), and microwave time (5, 10, 15 min). The models obtained from the responses were adequate and acceptable because the coefficient of determination R2 of the models was relatively high. Microwave power of 200W and microwave time of 8 minutes were concluded as the optimum conditions prior to air-drying at 50°C. To describe the drying process, the experimental data for moisture loss was converted to moisture ratios. The effective moisture diffusivity increased with increase in microwave power and its values varied from 1.83-4.87×10-9 m2/s. Using an exponential expression based on Arrhenius equation the activation energy and was found to be 16.41 W/mm.
Fakhri Shahidi; Mohebbat Mohebbi; Mohammad Noshad; Ahmad Ehtiati; Milad Fathi
Abstract
Banana is one of the most important tropical fruit from commercial and industrial point of view. This fruit is an extremely perishable fruit which can not be preserved using freezing process. Therefore, drying is the most promising method. Conventional air drying is energy intensive and consequently ...
Read More
Banana is one of the most important tropical fruit from commercial and industrial point of view. This fruit is an extremely perishable fruit which can not be preserved using freezing process. Therefore, drying is the most promising method. Conventional air drying is energy intensive and consequently expensive method. Pre-treatments can be used to reduce the initial water content or to modify the fruit tissue which will result in higher yield with lower costs. In this research, the effect of osmotic dehydration and ultrasonic pre-treatment variables prior to air drying of bananas, including the type of solution (Glucose, Sucrose), time of immersion in osmotic solution (30, 45, 60 min), solution concentration (Brix 30 and 50), ultrasonication time (10, 20, 30 min) on water loss, solid gain, shrinkage, effective diffusivities and color in the process were studied. Results showed that the highest rate of water loss and solid gain and also the lowest rate of shrinkage were obtained in both pre-treatments when 50% glucose concentration was applied. The results indicated that unlike ultrasonication, osmotic pretreatment had a significant effect on color parameters of dried bananas.
Keywords: Banana, Drying, Image processing, Osmotic dehydration, Qualitative characteristics, Ultrasound