Food Biotechnology
Ehsan Safari; Hassan Barzegar; Hossein Jooyandeh; Behrooz Alizadeh Behbahani; Mohammad Noshad
Abstract
Introduction The addition of chemical preservatives increases the shelf life of food products, but prolonged and indiscriminate use of chemical preservatives increases the resistance of microorganisms and the health risks associated with theiruptake. Medicinal plants have a wide variety in the world ...
Read More
Introduction The addition of chemical preservatives increases the shelf life of food products, but prolonged and indiscriminate use of chemical preservatives increases the resistance of microorganisms and the health risks associated with theiruptake. Medicinal plants have a wide variety in the world as well as in Iran. In recent years, the use of natural preservatives such as plant extracts and essential oils, due to their importance and role in controlling the growth of pathogenic microorganisms, has been proposed as an alternative to chemical preservatives. Black pepper is an aromatic medicinal plant. The specific properties of black pepper essential oil, such as its antimicrobial and antioxidant activity, have also been confirmed. Amphotericin B is one of the effective antibiotics for treating infections caused by pathogenic fungi. The mechanism of action of amphotericin B is to destroy fungal cells in such a way that by binding to ergosterol in the cell membrane of fungi, it creates pores and eventually destroys them. One of the most important and common antibiotics used in the treatment of infections caused by pathogenic bacteria is chloramphenicol. This antibiotic is effective against gram-positive and gram-negative bacteria due to its broad spectrum. The aim of this study was to identify bioactive functional groups, antioxidant potential, phenol and total flavonoid compounds and to evaluate the antimicrobial activity of black pepper extract against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus coagulans and Aspergillus niger.Materials and Methods In this study, the antimicrobial effect of black pepper aqueous extract was investigated against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus coagulans and Aspergillus niger by disc diffusion agar, well diffusion agar, minimum inhibitory concentration, and minimum bactericidal concentration methods. Total phenol and flavonoid contents of the species were determined by Folin-Ciocalteu and AlCl3 assays, respectively. Three biochemical assays, namely 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2-azinobis 3-ethyl-benzothiazoline-6-sulfonic acid (ABTS) free radical scavenging and β- caroten/linoleic acid activity systems, were used to evaluate antioxidant activity. Identification of functional groups as well as the structure of organic compounds in black pepper extract was also performed by Fourier transform infrared spectroscopy (FTIR). To evaluate the synergistic effect of black pepper extract in combination with amphotericin B and chloramphenicol antibiotics, Sub-MIC was used. Results and Discussion The peaks observed in aqueous black pepper extract confirmed the presence of O-H (3000-3500 cm-1), C-H (2800-3000 cm-1), C=O (1613.62-1633.52 cm-1) and C-O (100.57-1038.82 cm-1) functional groups of bioactive compounds. The total phenol and flavonoids content of the extract were 45.12 mg GAE/g extract and its flavonoid content was 29.66 mg QUE/g extract which had an important role in its antioxidant activity. The aqueous black pepper extract had remarkable DPPH free radical scavenging activity (IC50=32.37 μg/ml), ABTS free radical scavenging activity (IC50=28.45 μg/ml) and beta-carotene bleaching inhibitory effect (46.45%), revealing the electron/hydrogen donating ability of the essential oil. The results of measuring the antimicrobial activity of extract by disk diffusion and agar well showed that black pepper extract showed more antimicrobial effect on gram-positive bacteria Staphylococcus aureus and Bacillus coagulans than gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa. This could be due to the difference in their cell wall structure. Aspergillus niger is the most sensitive species to aqueous black pepper extract. The minimum inhibitory concentrations of extract for Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus coagulans and Aspergillus niger were equal to 32, 16, 4, 8 and 4 mg/ml, respectively. The minimum bactericidal concentration of black pepper extract for two bacterial species, Escherichia coli and Pseudomonas aeruginosa was more than 512 mg/ml. Also, the minimum bactericidal concentration for Staphylococcus aureus and Bacillus coagulans was 128 and 256 mg/ml, respectively, and 128 mg/ml for Aspergillus niger. The results of interaction of black pepper extract with chloramphenicol antibiotic showed that the Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus were synergistic, but antagonism was observed for the gram-positive Bacillus coagulans.
Food Biotechnology
Hediyeh Yousefipour; Mohammad Amin Mehrnia; Behrooz Alizadeh Behbahani; Hossein Jooyandeh; Mohammad Hojjati
Abstract
[1]Introduction: Herbs and spices, which are essential part of the human diet, have been used in traditional medicine to increase the flavor, color, and aroma of various foods and food products. Herbs and spices are also known as preservative, antioxidative, and antimicrobial agents. Plant extracts and ...
Read More
[1]Introduction: Herbs and spices, which are essential part of the human diet, have been used in traditional medicine to increase the flavor, color, and aroma of various foods and food products. Herbs and spices are also known as preservative, antioxidative, and antimicrobial agents. Plant extracts and their components with pathogen-growth suppression effect and little toxicity to host cells could be considered as excellent candidates for developing new antimicrobial agents. Trigonella foenum- graceum is an annual herbaceous plant with bright yellow and sometimes purple-white flowers. Therapeutic effects of this plant include analgesia, anti-cancer, and treatment of diabetes by lowering blood sugar and lowering blood lipids. In ancient Egypt, this plant was used to embalm the dead and incense. The seeds of the plant are used to treat leprosy, hemorrhoids, and relieve bronchitis. The seeds of this plant contain various compounds such as vitamins, amino acids, saponins, fatty acids, and flavonoids. The antimicrobial and antioxidant effects of T. foenum have been detrmined byvarious studies. This study was therefore aimed to produce the T. foenum extract and evaluate its antioxidant and antimicrobial properties. Materials and methods: Fifty g of powdered plant was added to 250 mL of water and stirred for 72 h. The solution was passed through the Whatman filter paper and then centrifuged at 3000 rpm for 10 min to discard the suspended solids. Next, a vacuum evaporator was used to remove the excess water and the obtained extract was packed and kept away from light at 4 °C. Total phenol and flavonoid contents were measured by colorimetric methods. The antimicrobial effect of the extract on Escherichia coli, Enterobacter aerogenes, Staphylococcus aureus, Bacillus cereus and Candida albicans was evaluated using disc diffusion agar (DDA), well diffusion agar (WDA), minimum inhibitory concentration (MIC) and minimum bactericidal /fungicidal concentration (MBC/MFC) methods. Interaction of aqueous extract and Chloramphenicol and Amphotericin B was also evaluated. Antioxidant effect of the extract was determined by ABTS, DPPH, and β-carotene/linoleic acid bleaching assay. Fourier-transform infrared spectroscopy (FTIR) was also used to identify the functional groups. Results and discussion: Total phenol and flavonoid contents of the extract were 46.60 mg GAE/g and 37.57 mg QE/g, respectively. The aqueous extract also showed antioxidant effects of 60.55, 55.53 and 50.40%, based on DPPH, ABTS methods and β-carotene/linoleic acid assay, respectively. T. foenum aqueous extract had the inhibitory effect on all examined microorganisms, at all concentrations (20, 40, 60 and 80 mg/mL). The antibiotic effect of chloramphenicol for E. coli, E. aerogenes, S. aureus and B. cereus was 13.30, 14.50, 18 and 19.10 mm, respectively, and the effect of this antibiotic for C. albicans was not measured. Also, the antibiotic effect of amphotericin B for C. albicans was 15.10 mm. Furthermore, the interaction of T. foenum aqueous extract with the antibiotic chloramphenicol presented a synergistic effect on the examined bacteria and led to a significant increase in inhibition zone diameter. Additionally, the interaction of the extract with antibiotics showed a synergistic effect on C. albicans. In infrared spectrum, peaks at 3370, 2965, and 1613 cm-1 were related to stretching vibration of O-H, C-H, C=C bonds of aromatic ring and aromatic groups of T. foenum aqueous extract. In general, the extract of T. foenum could be used as a natural antioxidant and antimicrobial agent in food and pharmaceutical industries.
Mohsen Ebrahimi Hemmati Kaykha; Hossein Jooyandeh; Behrooz Alizadeh Behbahani; Mohammad Noshad
Abstract
[1]Introduction: Oxidative reactions are needed for human survival, but these reactions can sometimes be destructive. There is a lot of evidence that shows many disorders (neurological, renal, hepatic) and diseases such as cancer and vascular diseases, and even food spoilage are caused by oxidative reactions ...
Read More
[1]Introduction: Oxidative reactions are needed for human survival, but these reactions can sometimes be destructive. There is a lot of evidence that shows many disorders (neurological, renal, hepatic) and diseases such as cancer and vascular diseases, and even food spoilage are caused by oxidative reactions of free radicals. Some types of reactive oxygen species, such as oxygenated water, and free radicals such as hydroxyl and superoxide, can react with certain fats, nucleic acids, and proteins in the body to kill them. In general, any substance that delays or prevents the oxidation process is called an antioxidant. In various studies that have been done so far, the antioxidant and protective properties of the novel plants have been reported. Among other species of medicinal plants, the rosemary plant with the scientific name (Rosmarinus officinalis L.) belongs to the mint family, the leaves of which are used as an additive in many foods. This plant is cultivated in many parts of the world, including Iran, but the main habitat of this plant has been attributed to the shores of the Mediterranean Sea. The purpose of this study was to identify chemical compounds, antioxidant effects, total phenolic and flavonoids contents, and cytotoxicity effect of Rosmarinus officinalis essential oil (ROEO) on colorectal cancer cell line (HT29) and identification of functional groups of ROEO using Fourier transform infrared spectroscopy (FTIR). Materials and methods: In the present study, the analysis of chemical compounds in ROEO was determined by gas chromatography-mass spectrometer (GC-MS). The total phenolic and flavonoid content of ROEO was evaluated using Folin-Ciocalteu and colorimetry using aluminum chloride, respectively. Antioxidant properties of ROEO were evaluated by DPPH and ABTS methods. The cytotoxic effect of ROEO on colorectal cancer cell lines (HT29) was evaluated by MTT method. The compositions of the functional groups present in the essential oil were investigated using Fourier transform infrared spectroscopy. Results and discussion: The chemical analysis of ROEO comprised of 29 compounds, which composed 94.22% of total essential oil. The main compound identified in the essential oil used in this study was eucalyptol with 40.13%. Total phenolic content was 72.55 mg gallic acid per gram of essential oil and its flavonoid content was 36 mg QE/g. The ROEO antioxidant activity for both DPPH and ABTS tests were 78.74% and 81.97%, respectively. The results of cytotoxic effect of ROEO showed that the cytotoxic effect of ROEO was highly dependent on its concentration. The higher the concentration of essential oil, the higher the level of cytotoxicity. Fourier transform infrared spectroscopy analysis confirmed the presence of aldehyde compounds, ketones, carboxylic acids, esters and alkenes. The results of all ROEO tests showed that this essential oil can be used as a potential source in the pharmaceutical, food, cosmetic and health industries.
Elnaz Saffari Samani; Hossein Jooyandeh; Behrooz Alizadeh Behbahani
Abstract
Introduction: Shirazi thyme is a perennial herbaceous plant related to Lamiaceae family growing in central and southern regions of Iran. This study aimed to assess chemical composition, bioactive functional groups, antioxidant potential, total phenol, and total flavonoids of Shirazi thyme essential ...
Read More
Introduction: Shirazi thyme is a perennial herbaceous plant related to Lamiaceae family growing in central and southern regions of Iran. This study aimed to assess chemical composition, bioactive functional groups, antioxidant potential, total phenol, and total flavonoids of Shirazi thyme essential oil (STEO) and also to evaluate its cell toxicity effect against the colorectal cancer cell line (HT29). Materials and Methods: The chemical composition of STEO was identified by gas chromatography-mass spectrometry. The bioactive functional groups of STEO were measured by Fourier transform infrared at spectra range of 500- 4000 cm-1. The total phenol and total flavonoids of STEO were determined by folin- ciocalteu and aluminum chloride colorimetric method, respectively. MMT method was performed to measure the cell toxicity of STEO against the colorectal cancer cell line (HT29). The cells were cultured on DMEM high glucose medium supplemented with 10% fetal bovine serum and penicillin/streptomycin and incubated at 37°C with 95% relative humidity and 5% CO2 concentration. The antioxidant activity of STEO was evaluated by DPPH and ABTS free radicals scavenging assays. Duncan test at 5% probability and SPSS software (version 18) was performed to compare the means of obtained results. Results and Discussion: Based on GC/MS spectrometry, a total of 29 constituents were identified and quantified in the STEO representing more than 99% of total constituents. Thymol with 39.3% and Carvacrol with 30% were the most constituents of STEO. The other major compound of STEO were Benzene (8.52%), γ-Terpinene (5.27%), and Caryophyllene (2.97%). The presence of peak at a wavelength of 320- 1000 cm-1 demonstrates O-C bound that could be related to organic compounds such as alcohols, carboxylic acids, esters, and ethers. The peaks occurred at spectral range between 2800- 3000 cm-1 (particularly at 2869.6 up to 2960.8 cm-1) are related to the stretching mode of C-H bounds and are mostly associated with alcoholic compounds in the essence. The amount of total phenol and flavonoids of STEO were 64.05 mg gallic acid equivalent/g and 11.68 mg quercetin equivalent/g, respectively. Results obtained from antioxidant activity of STEO with DPPH and ABTS free radicals scavenging showed that by increasing of STEO, the inhibition level of free radicals was enhanced. The inhibition percent of free radicals by using DPPH and ABTS at 1000 ppm concentration were 63.69% and 64.33%, respectively. The cell toxicity results of different STEO concentrations against the cell line HT29 revealed that survival of HT29 cells at 1, 3.125, 6.25, 12.5, 25, 50, 100 and 200 ppm of STEO were 100, 70.15, 61.19, 59.33, 38.83, 25.68, 20.65 and 12.2%. According to the results of this study, as the concentration of STEO increased, its effect on the cell line HT29 enhanced and the cell percentage viability decreased. Some antioxidant activity of STEO could be interrelated to its phenolic compounds. Based on the results of antioxidant activity, the amount of total phenol and flavonoids and the effect of STEO on cell toxicity against the cell line HT29, it seems that the use of STEO is applicable in the pharmaceutical and food industries
Food Biotechnology
Zohreh Sosani Gharibvand; Behrooz Alizadeh Behbahani; Mohammad Noshad; Hossein Jooyandeh
Abstract
Introduction: Nowadays, production and utilization of Nano materials have increased due to their unique and interesting properties. So far, different physical and chemical methods have been used to synthesize silver nanoparticles. Chemical synthesis is not compatible due to the hazardous chemicals residues ...
Read More
Introduction: Nowadays, production and utilization of Nano materials have increased due to their unique and interesting properties. So far, different physical and chemical methods have been used to synthesize silver nanoparticles. Chemical synthesis is not compatible due to the hazardous chemicals residues on the surface of the nanoparticles (NP) as well as production of by products with high impact on the environment. Physical routes for synthesis of NPs have some drawbacks, too. These methods require high energy and space, and are expensive. Therefore, biological methods for the synthesis of silver nanoparticles are considered emerging technologies as economic choices in the green chemistry field. Among these methods, plant-mediated synthesis of AgNPs is a rapid, simple, non-toxic and eco-friendly technique. Silver nanoparticles exhibit high bactericidal activity at their utilized concentrations with no toxic effect on human cells, and they also strongly enhance the antibacterial activity of conventional antibiotics even against multi-resistant bacteria through their synergistic effects. Callistemon citrinus belongs to the family Myrtaceae and includes more than 30 species. The plant is widespread in wet tropics, notably Australia, South America and tropical Asia, but presently can be found all over the world. Callistemon citrinus is a potential medicinal plant used to treat gastrointestinal distress, pain, and infectious diseases caused by bacteria, fungi, viruses, and parasites. In this study Callistemon citrinus aqueous extract was used to reduce silver ions in silver nitrate solution. In the following, the antimicrobial activity of nanoparticles synthesized by various qualitative and quantitative methods on Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Salmonella typhi and Listeria innocua was investigated. Materials and Methods: For the synthesis of silver nanoparticles, 25 mL of silver nitrate solution was added to 5 mL of leaf extract with a concentration of 100 mg/mL and maintained for 24 h at 20 °C. Change the color of the solution to Red represents the production of silver nanoparticles in the solution. To stabilize the presence of silver nanoparticles, the absorption spectrum of silver nanoparticles produced by spectrophotometer was prepared. Antimicrobial activity of silver nanoparticles synthesized using Callistemon citrinus leaf aqueous extract was examined by disc diffusion agar, well diffusion agar, minimum inhibitory concentration (microdilution broth) and minimum bactericidal concentration on Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Salmonella typhi and Listeria innocua. Results and Discussion: The results showed that in disc diffusion agar method, the diameter inhibition zone increased with increasing the concentration of silver nanoparticles. The maximum effect of silver nanoparticles synthesized using Callistemon citrinus leaf aqueous extract at a concentration of 150 mg / ml was observed for Pseudomonas aeruginosa. An inhibition zone was observed for all examined pathogenic microorganisms at all concentrations. The results showed that in the well diffusion agar method, nanosilver particles at a concentration of 18.75 mg/ml did not show any inhibitory effect on all the pathogenic microorganisms. The results of statistical analysis showed that there was no significant difference between all the concentrations of silver nanoparticles synthesized for Escherichia coli, Salmonella typhi and Staphylococcus aureus (P˂ 0.05(. The MIC for Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Salmonella typhimurium and Listeria innocua was 128, 256, 256, 256 and 512 mg/mm, respectively. The MBC for all the pathogenic strains was 512 mg/mm. The results of this study showed that the Callistemon citrinus leaf extract has a good ability to synthesize silver nanoparticles. Nanoparticles synthesized from Callistemon citrinus leaf extract had good antimicrobial activity against examined pathogenic bacteria, especially Gram-negative bacteria. Green-synthesized nanoparticles can be used as antimicrobial agent to fight infectious diseases caused by various microbial strains, although more research is needed in vitro, animal models and in vivo.
Food Biotechnology
Elahe Isvand Heydari; Hossein Jooyandeh; Mohammad Hojjati; Behrooz Alizadeh Behbahani; Mohammad Noshad
Abstract
Introduction: Probiotics are viable microbial food supplements that, when well-arranged in adequate amounts, confer a health advantage on the host. Probiotics have different positive health impacts such as equilibration of intestinal microbiota, prevention of cancer and diarrhea, reduction of cholesterol ...
Read More
Introduction: Probiotics are viable microbial food supplements that, when well-arranged in adequate amounts, confer a health advantage on the host. Probiotics have different positive health impacts such as equilibration of intestinal microbiota, prevention of cancer and diarrhea, reduction of cholesterol and blood pressure, adaptation to lactose intolerance, improvement of immune system, decrease of allergic symptoms, inhibition of pathogenic microorganisms etc. Lactic acid bacteria (LAB), are the most common bacteria introduced as probiotics. Materials and methods: In this research, a strain of Lactobacillus planetarium LZ95 was utilized and its probiotic potential was evaluated. This strain had been isolated from a traditional Iranian fermented food known as Ash-Kardeh and had been identified using culture-dependent methods and molecular techniques. Lactobacillus planetarium, is one of the known LAB bacteria. The aim of this study was to evaluate the probiotic potential of Lactobacillus plantarum LZ95 in relation to its resistance to acid (pH 2.5, 3.5 and 5.5), its ability to grow in different bile salt concentrations (0.2, 0.5, 0.8, 1.2 and 3%), its resistance against chloramphenicol, tetracycline, penicillin and gentamycin antibiotics, and its antimicrobial activity against Listeria innocua, Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli by using “Lawn on the spot” method. Results and discussion: Results shown that the viability of Lactobacillus plantarum ranged from 0 to 97.69 percent. The highest and the lowest bacteria viability were determined at pH=5 and 2, respectively. The results revealed that Lactobacillus plantarum was able to grow at all tested bile salt concentrations (0.2, 0.5, 0.8, 1.2 and 3%), and the lowest and the highest viability was found at 0.2 and 3 percent of bile salt levels, respectively. Lactobacillus plantarum was susceptible to all tested antibiotics. Results also shown that chloramphenicol with an inhibition zone diameter of 30.10 mm had the highest anticipation effect on the strain. Antimicrobial activity of Lactobacillus plantarum against Staphylococcus aureus (gram positive) and Escherichia coli (gram negative) with inhibition zone diameters of 11.30 and 7 mm was the highest and the lowest, respectively. The inhibition zone diameter around the strain of Lactobacillus plantarum revealed its ability to inhibit the growth of selected pathogenic bacteria. Based on results, the inhibition zone diameter against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Listeria innocua were 11.30, 7.00, 10.70, and 8.90 mm, respectively. In general, the isolated strain of Lactobacillus planetarium LZ95 had an acceptable probiotic potential such as resistance to bile salt and acidic conditions, susceptibility to some commonly antibiotics, and appropriate antimicrobial activity against food pathogenic bacteria. Therefore, this strain can be used in food industry to produce functional food products.
Food Biotechnology
Sara Momenzadeh; Hossein Jooyandeh; Behrooz Alizadeh Behbahani; Hassan Barzegar
Abstract
Introduction: Probiotics are live microorganisms, if consumed in enough quantity, they exert beneficial effects on human health owing to improvement of intestinal microbiota balance. In addition to the impact on gut microbiota, probiotics have important role on human physical and mental health. This ...
Read More
Introduction: Probiotics are live microorganisms, if consumed in enough quantity, they exert beneficial effects on human health owing to improvement of intestinal microbiota balance. In addition to the impact on gut microbiota, probiotics have important role on human physical and mental health. This matter demonstrates the increasing emphasis on the consumption of diet based on probiotics in order to treat and prevent of different chronic diseases, particularly those related to stress and inflammation cases. Lactic acid bacteria (LAB) are the most common strains used as probiotics. They are useful member of gut microbiota and belong to generally regarded as safe (GRAS) microorganisms. Because of the numerous benefits of LAB, the probiotic potential of different strains of this group of bacteria has been assessed broadly. Although various commercial species of probiotics are available in the market, determination of new strains with individual properties is noteworthy. Therefore, this research was aimed to investigate the probiotic and antimicrobial potential of Lactobacillus fermentum isolated from fermented food. Materials and methods: In the study,the probiotic potential of Lactobacillus fermentum including its resistance to acid (pH 2.5, 3.5 and 5.5) and bile salts (0.2, 0.5, 0.8, 1.2 and 3%) was studied. To evaluate the bile salts resistance, 100 μl of prepared microbial suspension was cultured on MRS Agar media containing bile salts. Plates were incubated at 37 ᵒC for 24 hrs under anaerobic condition. After incubation period, the plates were inspected for bacterial colonies observed by naked eyes. The antimicrobial activity was measured using “Lawn on the spot” method against Listeria innocua, Staphylococcus aureus and Pseudomonas aeruginosa. The resistance of Lactobacillus fermentum was also assessed against commonly used antibiotic drugs (chloramphenicol, tetracycline, penicillin and gentamycin). Results and discussions: Results shown that although Lactobacillus fermentum was not able to grow at pH 2.5, its viability in the pH 3.5 and 5.5 was 92 and 99%, respectively. This strain had also adequate resistance against different bile salt concentrations. In the present research, the growth rate of the examined strains was gradually reduced as the bile salt concentration was increased; so that the higher and the lower growth rate was observed at 0.2 and 3% bile salt concentrations, respectively. Results shown that the tested Lactobacillus fermentum had acceptable bacteriostatic effect on the selected pathogenic bacteria. The inhibition zone diameter for Listeria innocua, Staphylococcus aureus and Pseudomonas aeruginosa was 12.6, 20 and 11.1 mm, respectively. The maximum diameter of inhibition zone was found on gram positive Staphylococcus aureus. Lactobacillus fermentum was susceptible to chloramphenicol, tetracycline and penicillin and was semi-resistant to gentamycin (comparison with table CLSI). Based on the obtained results in this study, it may be illustrated that Lactobacillus fermentum had capability to tolerate the lower pH and different bile salt concentrations. This strain showed the proper proficiency to inhibit pathogenic bacteria. Furthermore, it was susceptible to commonly used antibiotic drugs and therefore there is no concern about the transfer of antibiotic resistant gens into pathogenic bacteria. Consequently, this strain may be used as a probiotic and a natural preservative in production of functional food products.
Mahboubeh Darapoor; Behzad Nasehi; Hassan Barzegar; Hossein Jooyandeh
Abstract
Introduction: By-products have traditionally been used as animal feed and are considered agricultural waste. However, they are rich in fiber and bioactive compounds, and efforts have been made to utilize them as functional ingredients and for the enrichment of food products. On the other hand, the intake ...
Read More
Introduction: By-products have traditionally been used as animal feed and are considered agricultural waste. However, they are rich in fiber and bioactive compounds, and efforts have been made to utilize them as functional ingredients and for the enrichment of food products. On the other hand, the intake of a sufficient amount of dietary fiber can regulate the flow of intestines, prevent and treat diabetes, cardiovascular and intestinal cancers. In this regard, in recent decades, there has been a tendency to seek new sources of dietary fiber and natural antioxidants, such as agricultural byproduct that were considered. In this regard, sugar cane bagasse, which has chemical compounds such as cellulose, hemicellulose, lignin, as well as phenolic compounds, waxes and minerals. Currently, bagasse used to production Cement (Tian et al., 2016), sand and grains (Sales et al., 2010), Chipboard (Garzon-Barrero et al., 2016), enzymes (Bocchini et al., 2005), single proteins (Rodriguez et al., 1992), vanillin (Mathew & Abraham, 2005), succinic acids (Chen et al., 2016), citric acid (Zhoghi et al., 2013), lactic acid (Laopaiboon et al., 2010). Donut is the only wheat industrial product that has a lot of attractive sensory features in spite of its high fat content. Therefore, one of the goals of the researchers in recent years has been finding solutions to improve its quality by reducing the absorption of oil or increasing the health components such as fiber. Therefore, this study was conducted to investigate the possibility of production of functional donuts that enriched with bagasse. Materials and methods: In this study, in order to optimize the formulation of donuts with two varieties of sugarcane bagasse fiber (0-25%), soybean soluble polysaccharide (0-2%) and frying time (2-5 minutes) on the physicochemical characteristics of donuts and sensory properties by using mini-tab software (version 16) and central composite rotatable design (CCRD) was investigated. The mean comparison was performed using Fisher test at 95% probability level. Bagasse were treated according to the method of Gao et al. (2013). Donuts were prepared according to the formulation by Nouri et al., 2017. Ingredients used in control donut formulation were consisted of 100 g of wheat flour (9 g/100g proteins, (Arde jonob Co., Khuzestan, Iran), 38 g of water, 9g of Shortening (Behshahr Industrial Co., Tehran, Iran), 13g of Egg, 13g of water for yeast, 6.3g of sugar, 6.3g of nonfat dried milk powder (Pegah Co., khozestan, Iran), 3g of active dried yeast (Nabmayeh, Khozestan, Iran), 1.6g of Vanilla extract (AbyazChimieEssence and Colour Co., Tehran, Iran), 1.6g of baking powder (Soheil Powder, Tehran, Iran), and 1.6g of Salt. The volume of the donuts was determined using the rapeseed displacement AACC method 10-05 (AACC, 2000). Moisture content of donuts crumb was measured using a Heraeus oven (model UT 5042, Germany) at 105 ºC for 3.5 h (Kim et al., 2015). The fat content of dried donuts was determined by Soxhlet extraction with petroleum ether for 5 h (Melito & Farkas, 2012). Firmness and springiness were measured in triplicate using a TA.XT2i Texture Analyzer (Stable Micro Systems, Goldalming, UK). The donuts were evaluated for over all acceptance of based on a five-point hedonic scale. The scale of values ranged from “dislike extremely” (score 1) to “like extremely” (score 5). And lightness was evaluated with Konica Minolta colorimeter. Results and discussion: The results showed that most of the proposed models in this study were proportional and meaningful from R2 and R2 (Adj). Also, the lack of fit these model were meaningless and their coefficient of variation was also appropriate. So, bagasse fiber increased moisture, hardness, cohesiveness and gumminess, fat, crust and crumb a, fiber and decreased specific volume, crust L. Increasing frying time increases hardness, cohesiveness, gumminess, and decreases crust L and moisture. Soybean soluble polysaccharide had no significant effect on these cases. According to the panelists, donuts containing bagasse fiber were harder and less chewable and had a darker color than the control sample. Response surface methodology described that donuts with optimum formulation of 9.09% bagasse fiber and 0.78% soybean soluble polysaccharide and the frying time of 2 minutes and 36 seconds would be the most desirable sample that has acceptable consumer characteristics. Investigating the optimal sample composition showed that iron and zinc mineral elements, fiber, fat, and total acceptance were higher than the control sample. However, no significant difference was observed in the control and optimum sample protein content. Also, with increasing durability, the moisture content of the product decreases. On the other hand, the specific volume of the control sample during the days of storage did not have a significant difference at 5% level. While the optimum sample volume in the days of shelf life has decreased. There was no significant difference between the control and optimum sample peroxidase in the first and third days, while on the fifth day, both were significantly decreased. The examination of texture characteristics suggests that the donut crumb of controlled and optimized was harder during the storage period, while the optimum sample was softer than the control sample.
Mona Nazari; Mohammad Amin Mehrnia; Hossein Jooyandeh; Hassan Barzegar
Abstract
Water in oil emulsions could be used for preparing low fat food products or encapsulating water soluble sensitive constituents. In this research, vitamin C loaded water in oil microemulsions prepared using spontaneous method without any co-surfactant. In spontaneous method, microemulsions are formed ...
Read More
Water in oil emulsions could be used for preparing low fat food products or encapsulating water soluble sensitive constituents. In this research, vitamin C loaded water in oil microemulsions prepared using spontaneous method without any co-surfactant. In spontaneous method, microemulsions are formed based on surfactant affinity toward continues phase and are thermodynamically stable. Results showed that by increasing vitamin C concentration, droplets size of emulsions increased from 66.7 nm for pure water to 214.3 nm for 3% loaded microemulsions and poly dispersity index increased from 0.15 to 0.501. Visual appearance of microemulsions changed from transparent for pure water containing microemulsions to opaque for 3% vitamin C loaded emulsions. By increasing vitamin C concentration, viscosity decreased from 115.4 to 87.9 mPa.s. This research showed that up to 3% vitamin C containing microemulsions could be prepared without co-surfactants.
Reza Amir Khamirian; Hossein Jooyandeh; Javad Hesari; Hassan Barzegar
Abstract
Introduction: Nowadays an increasing demand for whey products particularly whey protein concentrate (WPC) and whey protein Isolate (WPI) resulted in considerable amount of permeates production, which its rejection causes environmental pollution. The bioconversion of whey and permeate is an appealing ...
Read More
Introduction: Nowadays an increasing demand for whey products particularly whey protein concentrate (WPC) and whey protein Isolate (WPI) resulted in considerable amount of permeates production, which its rejection causes environmental pollution. The bioconversion of whey and permeate is an appealing procedure regarding to human nutrition, particularly for its functional properties. Functional foods are foodstuffs, which have specific functions in the human, resulting health benefits besides energy and nutrients. Fermented dairy products containing probiotic bacteria are group of functional foods, which have received increasing attention in recent years, including the development of the market with large commercial and research interests. Production of probiotic beverages from permeate could be considered as a simple solution to prevent permeate rejection and produce an economical product with appropriate functional properties. Definitely, dairy products are the foremost vehicle for probiotic supplementation. However, other nondairy probiotic products such as fruit and vegetable juices have been shown to afford health benefits. Therefore, the aim of this study was optimizing formulation of permeate-based lemon juice beverage and producing probiotic beverage from optimized beverage.
Materials and methods: Based on primary experiments, lemon juice beverages containing permeate were produced with different concentrations of water (19.77, 30, 45, 60, and 70.22 ml), permeate (12.95, 30, 55, 80 and 97.04 ml) and LEMON juice concentrate (5.95, 8, 11, 14, and 16.04 g). To estimate the impact of these independent variables and determination of optimized sample (non-probiotic beverage), response surface methodology (RSM) founded on central composite design (CCD) was applied. According to CCD design, 20 tests with six replicates as the center points were performed. Quadratic polynomial model were considered for the relationship between the predicted responses with the independent variables. The optimization was performed based on physicochemical (pH, acidity, total solids and brix) and sensory (taste, color, odor, after taste and total acceptability) characteristics of beverage samples. At the second stage, the best sample was inoculated with Lactobacillus acidophilus (La5) and its physicochemical properties, antioxidant capacity, sensory attributes and probiotic cell count were monitored during a 28-day storage period under refrigerator temperature (4°C).
Results and discussion: The results showed that all fixed factors, i.e. amount of water, permeate and lemon juice concentrate, had significant impacts on the physicochemical and sensory properties of lemon juice-permeate beverages. By increasing the amount of water up to 45 ml, permeate up to 55 ml and lemon juice concentrate up to 11 g in the formulation, the taste, after taste and total acceptability scores were significantly (p
Hossein Jooyandeh; Erfan Danesh; Mostafa Goudarzi
Abstract
Introduction: Health-conscious consumers are interested in eating dairy products including ice cream with less fat. As a consequence, the dairy industry has developed a variety of reduced-fat ice cream products. However, quality aspects of many of these products do not meet consumer expectations for ...
Read More
Introduction: Health-conscious consumers are interested in eating dairy products including ice cream with less fat. As a consequence, the dairy industry has developed a variety of reduced-fat ice cream products. However, quality aspects of many of these products do not meet consumer expectations for ice cream flavor, texture, and appearance. The formation of the ice cream structure is hindered when the fat content is reduced and attributes related to quality, such as viscosity, ice crystallization, hardness, melting rate and flavor, are affected. Low melting resistance, high firmness and undesirable flavor are the most cited defects in reduced-fat ice creams. Enzymatic treatment of reduced-fat milk with microbial transglutaminase has been found to improve the textural and sensory properties of the final dairy products. The transglutaminase enzyme (MTGase; protein-glutamine gamma glutamyl transferase, EC 2.3.2.13) catalyses “acyl” transfer reactions between γ-carboxyamide groups of glutamine residues (acyl donor) and the ɛ-amino group of lysines (acyl acceptor) in proteins, leading to inter- or intra-molecular cross-linking. The enzyme-catalyzed cross-linking of milk proteins results in the formation of high molecular weight polymers that not only are able to lower the melting rate thorough increasing the viscosity of ice cream mix, but they could also provide a smoother texture for the product by mechanically obstructing ice crystal growth. However, the extensive cross-linking of milk proteins may even adversely affect the physical properties of the resultant ice cream and thus, the added amount of enzyme needs to be adequate for the desired effects. The aim of this study was to investigate the effects of different concentrations of TGase enzyme on physical and sensory properties of light ice cream in order to selct the appropriate amount of enzyme concentration that provides the best results.
Materials and methods: The light ice cream (5% w/w fat) was treated with different concentrations of TGase enzyme (2, 4 and 6 units/g milk protein). The enzyme-treated samples were investigated for flow behavior characteristics (apparent viscosity, flow index, consistency index), overrun, melting rate, hardness and sensory properties (flavor, texture, color and total acceptability) in comparison with control light ice cream with no added Tgase.
Results and discussion: The results revealed that TGase treatment effectively increased the viscosity of light ice cream.The higher the enzyme concentration, the greater the viscosity of ice cream samples. This could be attributed to TGase-catalyzed formation of large protein polymers in ice cream mix that resist to flow. All enzyme-treated ice cream mixes exhibited shear-thinning behavior, where the viscosity decreased with increasing shear rate. The power law model was used to find consistency and flow indices for different treatments. The results showed that consistency index increased and flow behavior index decreased with TGase concentration. The stronger shear-thinning behavior (lower flow index) of the samples treated with higher concentration of TGase might be arisen from formation of higher number of large protein polymers in theses samples, which decrease in size during shearing. The enzyme treatment significantly increased the overrun of the light ice cream that could be due to the increasing effect of TGaes on the viscosity. The increase in viscosity promotes the retention of air in the ice cream which is concomitant with increased overrun; however, high viscosity reduces the whipping rate leading to lower incorporation of air into the ice cream and thus decreased overrun. This may account for significantly lower overrun of the light ice cream treated with 6 units TGase/g milk protein than the samples treated with 4 units TGase /g milk protein. It was observed that the enzyme treatment caused a significant improvement in melting resistance of light ice cream. In fact, the light ice cream treated with 6 or 4 units TGase /g milk protein took the longest time to melt, followed by the samples treated with 2 and 0 units TGase /g milk protein. This is somehow in accordance with the results of overrun; that is, the ice cream with higher overrun melted slower attributed to a reduced rate of heat transfer due to a larger volume of air. The overrun could also affect the hardness of ice cream as evidenced by the results of the present study. The results showed that the samples with greater overrun were softer. It could be assumed that the air cells, together with large protein polymers formed via catalytic action of TGase, limited the size of ice crystals by exerting mechanical hindrance, providing a softer texture for the enzyme-treated ice creams. Not surprisingly, the enzyme treatment did not considerably influence the flavor of light ice cream albeit the sample treated with 6 units TGase /g milk protein received significantly lower score than the other samples. Conversely, the color of enzyme-treated samples was more appreciated by consumers than the sample without added TGase possibly because of light scattering properties of enzymatically formed protein polymers in theses samples. Consistent with the results of physical properties, the texture of light ice cream treated with 4 or 6 units TGase /g milk protein were ranked as the most desirable samples, followed by the samples treated with 2 and 0 units TGase /g milk protein. The order of light ice cream samples for total acceptability scores was the same as that for texture scores with the exception of the sample treated with 6 units TGase /g milk protein whose total acceptability score was lower than the sample treated with 4 units TGase /g milk protein.
Erfan Danesh; Hossein Jooyandeh; Vahid Samavati; Mostafa Goudarzi
Abstract
Introduction: Scientific evidence has demonstrated that consumption of high-fat foods has direct connection with increasing incidences of various diseases such as obesity, diabetes, hardening of the artery walls and blood pressure. Thus, demand for low-fat foods has increasingly been promoted by health-conscious ...
Read More
Introduction: Scientific evidence has demonstrated that consumption of high-fat foods has direct connection with increasing incidences of various diseases such as obesity, diabetes, hardening of the artery walls and blood pressure. Thus, demand for low-fat foods has increasingly been promoted by health-conscious consumers. However, development of low-fat foods is challenging as fat makes a major contribution to sensory attributes of many foods. Low-fat cheeses are usually characterized as having a flat taste, more translucency and a rubbery and gummy texture. A common strategy for improving the properties of low-fat cheeses is to increase its moisture content sufficiently to provide moisture to protein ratio which is greater than or equal to its full-fat counterpart. The addition of denatured whey proteins, which are known for their high water-holding capacity, to cheese milk is one method used to achieve this objective. Likewise, transglutaminase treatment of cheeses milk has been shown to increase the moisture content of the resultant cheese. Enzyme transglutaminase (MTGase; protein-glutamine gamma glutamyl transferase, EC 2.3.2.13) catalyzes acyl transfer reactions between protein intra- or inter- chain glutamine (acyl donor) and lysine (acyl acceptor) peptide residues. UF-Feta cheese has the highest per capita consumption amongst cheese varieties in Iran. However, UF-Feta cheese is also perceived as being high in fat, discouraging some consumers from including it in their diets. The objective of this study was enzymatic incorporation of whey proteins into the formulation of UF-Feta cheese by TGase in order to obtain a low-fat product with desirable textural and sensory properties.
Materials and methods: The experiments were designed according to a 5-level-3-factor central composite design using response surface methodology (RSM). The independent variable were formulation ingredients including TGase enzyme (0-2 units/g protein), whey protein concentrate (WPC) (0-16 % w/w) and fat (0-10 % w/w) and the responses of interest were the physicochemical (moisture content and lightness (L*)), textural (hardness, adhesiveness, cohesiveness and springiness) and sensory properties (flavor and odor, color and appearance, texture and total acceptability) of UF-Feta cheese.
Results and discussion: The results indicated that fat reduction caused significant increment in the moisture content of UF-Feta cheese. The whey protein addition showed the same effect on moisture content as fat reduction whereas transglutaminase treatment decreased the moisture of UF-Feta cheese. As expected, fat reduction was accompanied by an increase in hardness and elasticity of UF-Feta cheese. Fat and moisture act as fillers in the casein matrix of cheese texture. When the fat content is decreased, the moisture does not replace the fat on an equal basis, so the total filler volume is decreased, resulting in lower moisture to protein ratio. This in turn increases possibilities of cross-linking between protein chains, resulting in a more compact cheese matrix with harder and chewier texture. Similarly, the increasing effect of TGase treatment on hardness and elasticity may be attributed to formation of a more compact protein matrix because of cross-linking action of enzyme on milk proteins. The whey proteins, however, decreased the hardness and elasticity of UF-Feta cheese. It seems that the added whey proteins increased the moisture content of cheese as sufficiently as to offset the decrease in the total filler volume caused by fat reduction, preventing the protein matrix to be more compact and elastic. Promoted protein-protein interactions of the cheese matrix resulting from fat reduction or TGase treatment might also account for our observation on decreased adhesiveness and increased cohesiveness. As the protein matrix becomes more compact, the cheese loses its adhesiveness. Conversely, as the number or strength of protein interactions increases, the structural integrity of cheese matrix called cohesiveness increases. Apart from fat, water can also create more open conformation for protein molecules, resulting in increased adhesiveness and decreased cohesiveness. This may justify our observation on higher adhesiveness and lower cohesiveness of whey protein-fortified low-fat cheeses with high moisture content. Not surprisingly, all the sensory attributes of UF-Feta cheese were adversely influenced by fat reduction. On the other hand, whey proteins improved the flavor and texture of low-fat UF-Feta cheeses. They, however, showed no effect on appearance score of cheese samples in spite of the fact that they somewhat compensated for lost lightness (L*) of low-fat cheeses. Similarly, TGase treatment did not affect the appearance acceptability of UF-Feta cheeses despite having significant effect on their L* value. The sensory panel did not appreciate the flavor of TGase-treated samples; however, they scored the samples treated with enzyme concentration lower than 1 U/g protein as having desirable texture. RSM suggested that the optimum formulation of 5.95% (w/w) fat, 0.56 unit TGase per gram protein and 8.79% (w/w) WPC could produce a low-fat cheese sample with desired textural (hardness 0.342 kg; elasticity 8.58 mm; adhesiveness -0.070 kg.s; cohesiveness 0.474) and sensory (overall sensory score 88.73 out of 100) attributes.
Hossein Jooyandeh; Vahid Samavati
Abstract
Introduction: Accumulation of free radicals could lead to permanent oxidative destruction of organisms by attacking macromolecules and organelles of the body, thus causing organism aging, fatigue and degenerative diseases. Therefore, discovering and developing safe and non-toxic natural antioxidants ...
Read More
Introduction: Accumulation of free radicals could lead to permanent oxidative destruction of organisms by attacking macromolecules and organelles of the body, thus causing organism aging, fatigue and degenerative diseases. Therefore, discovering and developing safe and non-toxic natural antioxidants has been an interesting topic in recent decades. Compared to synthetic antioxidants, extracts from plant resources usually have quite stable constructions and great antioxidant activities, and can easily be absorbed without dangerous immunoreactions. Many antioxidant compounds, naturally occurring from plant sources, have been identified as free radicals or active oxygen scavengers. Malva neglecta (MN), which is known as Panirak/Tooleh in Iran is an annual and herbaceous plant. The leaves and flowers of MN are used in traditional phytotheraphy and in treatment of cough, respiratory system and digestive system problems. The objective of this study was to optimize process conditions of extraction in order to obtain the highest yield from crude extract of MN leaves and identify its antioxidant properties. Materials and methods: Three-variable-three-level Box-Behnken design-response surface methodology (BBD-RSM) with five replications at central point was used to optimize the extracting parameters of crude extract from the MN leaves including extraction time (1-8 h), extraction temperature (50-100°C), and the water/solid ratio (3-30). The ability of extracted materials to scavenge the free radicals of DPPH, OH and super oxide was also evaluated by chemical analysis. Results and Discussion: All three independent variables effected the yield of crude extract of MN leaves. The extraction yield of MN crude extract significantly increased from 5.90% to 8.01% with extraction time varying from 1 h to 6 h. However, the yield was not altered meaningfully, as the extraction time was increased from 6 h up to 8 h. This may be due to degradation of the polysaccharides because of the extended extraction time. The extraction process was performed with temperatures from 50 °C to 100 °C, with the other extraction variables such as ratio of water to raw material and extraction time fixed at 13 ml/g and 3.5 h, respectively. The extraction yield of crude extract increased with increasing extraction temperature and peaked at 7.89 at 100 °C. Different ratios of water to raw material have considerable effect on extraction yield. In this study, we used ratios of water to raw material from 3 to 30 ml/g, with fixed parameters (extraction time and extraction temperature at 3.5 h and 75 °C, respectively). Extraction yield increased noticeably from 6.10 to 8.10 with ratio of water to material varying from 3 ml/g to 24 ml/g. As extraction time, at the higher experimental levels, as the ratio of water to raw material was increased (from 24 up to 30 ml/g) the yield of crude extract was not changed considerably. Under the appropriate condition of ratio of water to raw material, the crude extract molecules can swell thoroughly, and more compounds could dissolve in water to improve extraction yield. The determination coefficient (R2 = 0.9897) suggested that the model was valid, implying that 98.97% of the variation could be explained by the fitted model. The adjusted determination coefficient was used to evaluate the correlation between the experimental values and predicted values, and the outcome (R2Adj= 0.9794) suggested that the correlation was significant. The f-value (1.49) for “the lack of fit” indicated that the “lack of fit” was not significant relative to the pure error (p > 0.05). The CV for yield of MN leaves was 0.64%, which defined a good reliability of the experimental values. The adequate precision value 21.61 and PRESS 0.42 for our model indicated an appropriate model could be designed. On multiple regression analysis, the quadratic polynomial equation for the independent variables and response variable expressed as follows: Y =7.82 + 1.025X1 + 3.241667X2 + 2.031X3 + 0.525X1X2 - 0.7X1X3 + 0.675X2X3 – 0.206X12 – 0.21833X22 Where, Y is extraction yield (%); X1, extraction time (h); X2, extraction temperature; and X3, ratio of water to raw material (ml/g) Statistical analysis of the results showed that the optimal conditions for higher extraction yield were extraction time: 6 h, extraction temperature: 90oC, and the ratio of water to raw material: 19. Under these conditions, the experimental yield was 9.22% ± 0.47%, which well matched the predicted value (9.18%), under these conditions; the experimental yield was 9.18%. Furthermore, results obtained from chemical analysis showed that DPPH, OH and super oxide scavenging of MN crude extract increased rapidly with increasing of its concentration. DPPH scavenging rate of the crude extract was more than BHT standard (89% vs. 78%) at their maximum equivalent concentration (300 ppm). Furthermore, OH and super oxide scavenging ability of MN crude extract (87% and 91%, respectively) were significantly more than ascorbic acid standard solutions (74% and 81%, respectively) at their highest experimental concentrations (150 ppm). Based on our results, components extracted from Malva neglecta leaves may introduce as an antioxidant and free radical scavenger. This study could help food industries to add a new source of hydrocolloid with certain functionality as an alternative additive in different foods, cosmetic and pharmaceutical products.
Hossein Jooyandeh; Majid Nooshkam; Amir Bahador Davari
Abstract
The effect of different mozzarella cheese manufacturing methods, i.e. direct acidification (DA), starter culture (SC) and their combination method (CM) on physicochemical, yield, texture, color and sensory properties of the product were compared. Chemical analyses of samples revealed that the SC cheese ...
Read More
The effect of different mozzarella cheese manufacturing methods, i.e. direct acidification (DA), starter culture (SC) and their combination method (CM) on physicochemical, yield, texture, color and sensory properties of the product were compared. Chemical analyses of samples revealed that the SC cheese had higher fat, moisture, ash, titratable acidity, actual and adjusted yields and fat recovery than DA cheese. DA cheese showed higher springiness, cohesiveness, and hardness than CM and SC cheeses, due to denser and elastic protein network, whereas meltability and adhesiveness of DA cheese was lower than CM and SC samples. SC cheese had significantly higher b-value than DA sample. The sensory evaluation revealed that the SC cheese had higher sensory quality than other cheeses in fresh state and during 45 days of storage. In general, sensory scores of all mozzarella cheeses were acceptable up to 15th day of storage and thereafter decreased progressively till the end of storage period.