Nazanin Maryam Mohseni; Habibollah Mirzaee; Masoumeh Moghimi
Abstract
Introduction: Niger seed with scientific name of Guizotia abyssinica Cass from Asteraceae family is a dicotyledonous and one year plant that is one of the main and most important oil sources in Ethiopia and India. In different researches the amount of extracted oil from the seed of this plant has been ...
Read More
Introduction: Niger seed with scientific name of Guizotia abyssinica Cass from Asteraceae family is a dicotyledonous and one year plant that is one of the main and most important oil sources in Ethiopia and India. In different researches the amount of extracted oil from the seed of this plant has been mentioned about 37 to 50 percent. The composition of fatty acid in this plant is similar to safflower and sunflower seed oil (of course with high percentage of Linoleic acid that may reach more than 85 percent). Generally, the mechanical press is one of the most popular methods for extracting oil from vegetable oil seeds all over the world. Increase in temperature will lead to more and faster extraction of oil from seeds and will increase the extraction efficiency. Microwave, is the non-ionized electromagnetic wave with frequency between 300 MHz to 300 GHz and are placed between the radio and infrared waves in the electromagnetic spectrum, consumers’ increasing demand for higher quality products and with minimized waste of nutrients in comparison with conventional thermal methods, caused an increase in use of non-thermal methods such as pulsed electric field methods. In current research it is tried to study the influence of pulsed electric fields and microwave pre-treatments on some characteristics of oil and meals obtained from Niger seed. Materials and methods: To perform this research, the Niger seeds (contain 40% oil) was prepared from local market of Fars Province (Iran). Then the external materials such as weed seeds, sand and stones were separated and removed manually and the seeds were treated with microwave pre-treatment with power of 900W and different procedure times (100 and 200 seconds), and pulsed electric field with two levels of electric field intensities of (250 and 500 kV/cm with 30 pulses). After performing these treatments, the seeds oil was extracted with screw press at the speed of 34 rpm then various experiments, such as the efficiency amount of oil extraction, refractive index, total phenolic compounds, oxidative stability, protein and ash of meals, were performed on the oil in a complete random model with three repetitions. Results and discussions: The comparing group mean test with Duncan’s method indicated that applying pulsed electric fields and microwave pre-treatments in lower times and intensities caused an increase in extraction efficiency. But with increase in the microwave time and also increase in the intensity of pulsed electric field, the efficiency of oil extraction was decreased in such a manner that when a pulsed electric field with intensity of 500 kV/m was used, the oil extraction had the lowest extraction efficiency. The increase of oil extraction efficiency using microwave can be related to more fracture or disintegration of cells which contain oil during treating with microwave. The reason for increase in the efficiency of oil extraction using the pulsed electric fields can be attributed to the electrical decomposition of cells and more permeability of them. A decrease in the oil extraction efficiency with excessive increase in the microwave time and intensity of electric field is probably attributed to more degradation of seeds internal structure and closure of oil outlet duct. Analysis of data obtained from oils refractive index indicated that the pre-treatment type didn’t have any significant influence on the oils refractive index (P>0.05) and the amount of refractive index was 1.478 for all of the measured samples (figure 2). Applying various pre-treatments, caused an increase in the amount of total phenol and oxidative stability of oils in the manner that the maximum amount of total phenol and oxidative stability was obtained from pulsed electric field pre-treatment with the intensity of 500 kV/m. The amount of tocopherol and antioxidant compounds can be the reason for this observation because of applying these pre-treatments. Variance analysis of data obtained from performing tests and experiments indicated that the influence of pre-treatment type on the amount of protein and meals ash was completely significant (P<0.01). Comparison of the means in data obtained from experiments showed that the maximum and minimum amount of protein and meals ash in the treated sample was obtained with 100 seconds microwave and the pulsed electric fields with 500 kV/m intensity, respectively, in other words, applying various treatments (in low times and electric field intensities of microwave and pulsed electric fields) in oil extraction led to an increase in the amount of protein and ash in comparison with non-treated sample and the reason of this fact can be attributed to the more extraction of oil from seeds and consequently an increase in the % protein and ash remained in the meals. Finally, the results of this research indicated that applying microwave (for 100 seconds) and pulsed electric field (with electric field intensity of 250 kV/m) can be very useful in extracting oil from Niger seed because of increase in the extraction efficiency and also increase of useful compounds in oil.
Najimeh Taghavi; Aman Mohammad Ziaiifar; Habibollah Mirzaee; Alireza Sadeghi Mahoonak; Mohammad Ghorbani; Hassan Sabbaghi
Abstract
Introduction: Frying is a unit operation in which food is heated in oil to alter its eating quality. First reviews of frying performed on the principles of heat and mass transfer and oil uptake in foods, because during the frying process heat and mass transfer occurred between product and frying medium. ...
Read More
Introduction: Frying is a unit operation in which food is heated in oil to alter its eating quality. First reviews of frying performed on the principles of heat and mass transfer and oil uptake in foods, because during the frying process heat and mass transfer occurred between product and frying medium. In fact, the food loses moisture content and lost water will replace with oil. The moisture loss in the product causes rapid formation of the crust while the core remains soft and moist; therefore higher oil uptake occurred in the crust. There is an argument about the effect of frying on the sensory characteristics of foods, changes of nutritional value and health concerns in fried foods and methods applied to reduce oil content. Consumers prefer eating foods with lower oil content. One of the typical methods for reducing oil uptake in food commodities is using of coating before frying process. Edible coatings are known as a thin layer of edible polymers which is placed on the surface of the food. Application of edible coating decreases some destructive factors like the presence of various gases such as oxygen and carbon dioxide and humidity. Hydrocolloides are referred to a group of polysaccharides and proteins which create many features such as consistency in aqueous solutions, foams stability, emulsions, improve the sense of mouth and create a similar state of fatty and oily mode for products with lower content. In fact hydrocolloid coatings can reduce the excessive oil uptake due to their interesting thermogelling properties and at the same time they are invisible and have no negative influence on the sensory attributes of fried foodstuff. Even more, fried products have low fat content with improved nutritional values, higher crispiness and better palatability. Pishmeh is described as deep-fried dough pastry which is usually prepared by local producers of Turkmen (Iran). This product absorbed high oil content during frying process. This study was carried out to evaluate the effects of hydrocolloid coatings including Aloe Vera, Carboxymethyl cellulose (CMC) and Xanthan on the oil uptake of Pishmeh.
Materials and methods: Hydrocholloid materials such as Aloe Vera, Carboxymethyl cellulose (CMC), Xanthan and complex of Xanthan-CMC were used. The gums were prepared at concentrations of 0.5 and 1% by dissolving in water at 70 ° C by stirring with a homogeneous mixer until a clear suspension was obtained. To extract the Aloe Vera gel, first, a thick epidermis (The shell) was separated from parenchyma using cutter. The parenchyma was immersed in a container of distilled water to lose bitter taste for 5 minand then parenchyma was taken out from water and transferred into a mixer (for 1 minute at 25 °C) and finally converted to a uniform colloidal solution. In the next step, the prepared dough samples were immersed in the colloidal suspensions for 1 min and the coated samples were placed on a mesh tray to remove the excess residuary coats. The samples were fried in sunflower oil at 170 °C for 6 min. The samples were then placed on a metal tray after frying to remove excess oil. After removing the oil and reaching the ambient temperature, physical and chemical tests were carried out on the sweet Pishmeh. The experiments included determination of moisture, fat content, measurement of coating parameters (such as coating ratio and frying efficiency) and color analysis.
Results and Discussion: The result showed that coating by hydrocholloid materials was led to decrease water loss in comparison to non-coated sample (control) during frying. Furthermore, oil uptake of coated samples was lower than control sample (p
Hamid Bakhshabadi; Habibollah Mirzaee; Alireza Ghodsvali; Seyed Mahdi Jafari; Aman Mohammad Ziaiifar
Abstract
Introduction: Black Cumin seed (Nigella sativa L.) as one of the novel edible oil resources used commonly nowadays as seasoning in food product industries due to considerable medicinal properties and high nutritional impacts. Oil extraction by pressing method as an approach compared to other methods ...
Read More
Introduction: Black Cumin seed (Nigella sativa L.) as one of the novel edible oil resources used commonly nowadays as seasoning in food product industries due to considerable medicinal properties and high nutritional impacts. Oil extraction by pressing method as an approach compared to other methods including solvent extraction is faster, safer and cheaper. In the oil extraction process, the preparation of the seeds is a substantial stage for obtaining oil with high quality and efficiency. Microwaves are electromagnetic waves that have a frequency ranged from 300 MHz to 300 GHz with corresponding wave lengths ranged from 1 mm to 1 m. On the other hand the artificial neural network as a powerful predictive tool in a wide scale of process parameters has been studied on an industrial scale in this research in order to achieve a simple, rapid, precise as well as effective model in the oil extraction of Nigella sativa L seed.
Materials and Methods: In the present study Black Cumin seeds after preparation including cleaning and passing resistance of the samples in front of air and moisture were stored in a plastic bag until the day of experiments. Then, they have been pre-treated with microwave within different processing times (90, 180 and 270 S) and powers (180, 540, and 900 W). Afterwards, seeds’ oil was extracted by screw rotational speed levels approach (11, 34 and 57 rpm). Different selected parameters including extraction efficiency, oil acidity value, color and oxidative stability were determined. To predict the alterations trend, the artificial neural network (ANN) design in MATLAB R2013a software was used.
Results and Discussion: According to MSE and R2 values obtained in this study, feed forward neural network with transfer function sigmoid hyperbolic tangent and Levenberg- Marquardt learning algorithm with topology of 3-10-5 (input layer with 3 neurons– a hidden layer with 10 neurons – output layer with 5 neurons) were selected as the optimal neural network with R2 more than 0.995 and MSE equal to 0.0005. Also, the results of the optimized and selected models were evaluated and these models with high correlation coefficients (over 0.949), were able to predict the changes' trend. According to the complexity and multiplicity of the effective factors in food industry processes and the results of this research, the neural network can be introduced as an acceptable model for modeling these processes. By determining the activation function in neural networks which was a function of sigmoid hyperbolic tangent in this study and also, with having the amounts of weight and bias, the connections created by the neuro-fuzzy model can be extracted. By defining this simple created mathematical equation, in computer software such as Excel, we can have a useful, simple and accurate program for predicting the desired parameters in the process of oil extraction by using microwave pre-treatment. Due to high accuracy of neural model we can trust the prediction of these models with high confidence, and this model can be used to optimize and control the process, which can lead to saving in energy and time, and on the other hand, can create a better final product.
Afshin Faridi Esfanjani; Seyed Mahdi Jafari; Elham Assadpour; Habibollah Mirzaee
Abstract
Introduction: Controlling and targeting release of bioactive compounds have a key role in improving their functional properties such as antioxidant and anti-disease activities. Encapsulation is one of the best methods for protection and controlling release of bioactive ingredients. Indeed, in this process, ...
Read More
Introduction: Controlling and targeting release of bioactive compounds have a key role in improving their functional properties such as antioxidant and anti-disease activities. Encapsulation is one of the best methods for protection and controlling release of bioactive ingredients. Indeed, in this process, protection and controlling release of ingredients as core materials are performed by surrounding of them via variety of wall materials. Emulsions are most popular encapsulation systems that are classified in variety types such as single layer emulsion, multi-layer emulsion, doubleemulsion, and etc. Hydrophilic bioactive compounds can be loaded in inner aqueous phase of water in oil in water (W/O/W) double-emulsions. The stability of doubleemulsions is low due to presence of two interfaces in them.Applying a thermodynamically stable W/O emulsion (e.g., micro-emulsion) as a primary emulsion and using of complex biopolymers as emulsifier and stabilizer in outer phase of doubleemulsions can improve their stability (Dickinson, 2011; Boyer et al, 2012).Saffron bioactive compounds include crocin, picrocrocin, and saffranal are widely used for a variety of functional and healthy goals in food and pharmaceutical industries. These compounds have many different functions, including anti-carcinogenic, anti-oxidant, anti-depressant, anti-apoptotic, anti-tussive, anti-nociceptive, anti-inflammatory and anti-thrombotic properties (Moraga et al, 2004).In the present study, our main goal was kinetically evaluated release of crocin, picrocrocin and saffranal from inner phase to outer phase of doubleemulsion during 22 days storage by Zero order, Fist order, Higuchi, and Hixson-Crowell.Materials and method: Saffron was provided from Torbatheydariyeh farms, Khorasan-e-razavi, Iran. Sunflower oil and sodium azide were purchased from FRICO (Sirjan, Iran) and Sigma-Aldrich (St. Louis, USA), respectively. Whey protein concentrate (80% protein) and sorbitanmonooleate (span 80) were obtained from Sapoto cheese (USA) and Merck (Germany), respectively. Maltodextrin was obtained from Qinhuangdao starch Co. (DE 16-20, China) and citrus pectin with a degree of methyl esterification of 71.1% and galacturonic acid >65% was purchased from MP biomedical (Netherland). All other chemicals used in this study were of analytical grade.For extraction of crocin, picrocrocin and saffranal, a total of 10 grams of saffron sample was macerated in 150 mL of water in a glass bottle, covered with aluminum foil (to prevent direct exposure to light), and was placed in an incubator shaker (Kavooshmega, Iran) for 24 hours at 30oC. Then, this solution was homogenized (10000 rpm for 10 minutes, HeidolphSilentcrusher, Germany) for maximum extraction of saffron compounds. Finally, the extract was filtered under vacuum by using a Whatman No. 1 (11 mm) filter paper, and kept in the freezer at -18oC prior to any examination. ISO/TS 3632 procedure (2003) was used for the measurement of saffron compounds. The doubleemulsions were prepared in two-step:(a) Frist, primary W/O micro-emulsions were produced by two formulations: 60:30:10% and 62:33:5% of sunflower oil, span 80, and saffron extract, respectively. (b) Then, the W/O micro-emulsions was gradually added into the outer aqueous phase contains why protein concentrate (WPC)/maltodextrin or WPC/pectin/maltodextrin while blending by a homogenizer (12000 rpm for 5 minutes at 10oC, HeidolphSilentcrusher, Germany) and then these coarse emulsions were further emulsified using mentioned homogenizer (15000 rpm for 8 minutes at 10oC). All doubleemulsions were composed of 25% primary emulsion and 75% outer aqueous phaseDroplet size of doubleemulsions after one day and 22 days storage weremeasured using Zetasizer (Malvern Instruments, Worcestershire, UK).The released components in the outer aqueous phase were measured by evaluation of encapsulation efficiencyof the ratio of crocin, picrocrocin, and saffranalat a specific time:E (%) = 100- (C2×100/C1) (1)Where C2 is the percentage of crocin, picrocrocin and saffranal in outer aqueous phase and C1 equals to the percentage of compounds in inner aqueous phase.C2 is a released into outer aqueous phase relative to the total amount present in the outer aqueous phase if all compounds were released (M ∞).The viscosity of emulsions was measured using a programmable viscometer (model LVDV -II + Pro, Brookfield Engineering Laboratories, USA) and by a ULA spindle.The released are kinetly evaluated by Zero order, Fist order, Higuchi, and Hixson-Crowell.The experiments were all carried out in triplicate. The collected data were analyzed by one-way ANOVA; the means were compared by the Duncan's multiple range tests at the 5% level through SPSS version 21 (IBM, USA).Results and Discussion: As shown in fig. 1, the droplet size of produced W/O micro-emulsions were lower than 200 nm. In fact, these droplets are water droplets containing bioactive compounds of saffron dispersed within oil phase that surrounded with Span 80 (Fig. 2).Also, it was found that by increase of saffron extract (from 5% to 10%) as dispersed phase in W/O micro-emulsions, droplet size and poly-dispersityindex (PDI) weresignificantly (P< 0.05) affected (Table. 3).As shown in table. 4, crocin, picrocrocin, and saffranal had a same release trend, but the release rate of crocin was lower than saffranal and picrocrocin. As regard to R2, SSE, and RMSE from kinetic modeling in table. 5, the firstorder was a best model for release of crocin, and zero order was a best model for release of picrocrocin and saffranal. Also, kinetic date of release showed that the high release of crocin, saffranal, and picrocrocin was observed by increasing the dispersed phase content of primary W/O micro-emulsion and also it was found that WPC/pectindelayed the release of encapsulated ingredients more than single WPC (Table. 5). Indeed, the using of complex biopolymers as the external binary film of doubleemulsions causes a resistance to release for inner compounds (Dickinson, 2011).As shown in fig. 3, the viscosity of doubleemulsions stability with WPC/pectin complex was higher than doubleemulsions stabilized by only WPC. This can confirm the higher stability of stabilized doubleemulsions with complex biopolymers (Olivieri et al, 2003).
Hojjat Karazhiyan; Ehsan Hoseini Bay; Habibollah Mirzaee
Abstract
Introduction: Liquorice (Glycyrrhiza glabra) of the family Leguminosae is a 30±60 cm tall shrub having blue or violet flowers. Its roots are 15±20 cm long and have a cylindrical rod shape of 0.5±2.5 cm in diameter. Liquorice root contains a variety of compounds, the most prominent ...
Read More
Introduction: Liquorice (Glycyrrhiza glabra) of the family Leguminosae is a 30±60 cm tall shrub having blue or violet flowers. Its roots are 15±20 cm long and have a cylindrical rod shape of 0.5±2.5 cm in diameter. Liquorice root contains a variety of compounds, the most prominent of which is the water soluble triterpenoid glycoside glycyrrhizin that constitutes about 16 %. It is responsible for the characteristic sweet taste of liquorice (50 times sweeter than sucrose). The root also contains various sugars (to 18%), flavonoids, saponoids, sterols, starches, amino acids, gums, and essential oil. The water extract of liquorice root has found wide uses in medicine, pharmacology and food industry because of its physical and functional properties.In the food industry, its distinctive flavour makes it a popular sweetening/flavouring agent. It is also used as an emulsifier to create foam in drinks and beverages. Liquorice root extract is commonly consumed and marketed in liquid, concentrated, dry and powdered forms.Knowledge of the flow (rheological) behavior of the concentrates is useful in quality control, sensory evaluation and engineering applications that are related to the proper design and operation of unit operations, as well as for the understanding of the pertinent transport processes in the operations.The purpose of this investigation was to characterize the rheological behavior of liquorice extract concentrates and study the effect of temperature and soluble solids on the viscosity.Materials and methods: Extraction was made at 50°C and water to liquorice root mass ratio of 4:1. The mixture was shaken continuously for 100 min, centrifuged for 10 min and then filtered to obtain a clarified extract, which was concentrated to 50°Brix in a laboratory rotary vacuum evaporator.The rheological behavior of licorice extract has been studied at temperature range 10-70 0C and 5-50 % soluble solids using Brookfield viscometer. Results and discussion: The obtained results showed that all the samples exhibited Newtonian behavior at all the studied temperatures and concentrations. The flow index decreased slightly with sample concentration. Several workers observed Newtonian behavior of clarified and depectinated juices.The shear stress versus shear rate data obtained were well fitted to Newton's model. An increase in temperature decreased the viscosity and this inverse relationship has been likened to the incidence of a freer molecule to molecule interaction at elevated temperatures. Since viscosity is an indication of the resistance to flow such a freer interaction is expected to minimize the resistance. It was observed that, irrespective of the temperature a decrease in soluble solids content decreased the viscosity. It is due to dilution which increases the separation between the particles, thus decreases interaction between the particles.In contrast, the opposite effect was observed when soluble solids content became higher. Arrhenius type equation was found to be suitable in describing the relationship with correlation coefficient values between 0.94 and 0.99. The activation energy increased with the soluble solids content; therefore, temperature had a greater effect on samples with higher soluble solids content. The data obtained in this study can be used in designing equipment for handling of concentrated liquorice root extract at the temperature range studied.
Hassan Sabbaghi; Aman Mohammad Ziaiifar; Alireza Sadeghi Mahoonak; Mahdi Kashani-Nejad; Habibollah Mirzaee
Abstract
Introduction: Heat transfer processes are important for almost all aspects of food preparation and play a key role in determining food safety. Temperature difference between the source of heat and the receiver of heat is the driving force in heat transfer. Convection is the transfer of heat by the movement ...
Read More
Introduction: Heat transfer processes are important for almost all aspects of food preparation and play a key role in determining food safety. Temperature difference between the source of heat and the receiver of heat is the driving force in heat transfer. Convection is the transfer of heat by the movement of groups of molecules in a fluid. The groups of molecules may be moved by either density changes or forced motion of the fluid. In a typical convective heat transfer a hot surface heats the surrounding fluid, which is then carried away by fluid movement. The convection heat transfer coefficient or h value is defined as the rate of heat that will be convected at the product surface–fluid interaction through a unit surface area of the material if a unit temperature gradient exists between the product surface and the surrounding fluid and is very important in modeling and design of frying systems for foods. Frying is a very turbulent process with random and dynamic movement of small bubble particles over the boundary layer of the product surface. Deep fat frying is a very fast method of food processing among conventional heat transfer methods. The frying by immersion can be divided into four stages: (1) initial heating (the temperature of the internal part is slowly increased to boiling point); (2) surfaces boiling (crust formation and higher oil turbulence); (3) falling rate (long period, vapor transfer at the surface decreases) and (4) bubble end point (dried product). These four states during frying can be generalized as non-boiling phases (stages 1 and 4) and boiling phases (stages 2 and 3). So, Convection heat transfer during immersion frying may be divided into two stages: 1) free convection during initial heating of the material and 2) forced convection during the boiling phase. In this study, the convective heat transfer coefficient investigated as a function of the water loss rate during frying process due to the effects of evaporation and boiling on this thermal parameter. Understanding of changes in heat transfer coefficient for thermal control of the frying process is very important to achieve optimum quality of product. Materials and Methods: The potato stripes with specified size are fried at temperature of 145, 160 and 175 °C for 60, 120, 180 and 240 seconds using sunflower oil. The center and surface temperatures of potato stripes were recorded with two-second intervals using T type thermocouple and data logger. Moisture content of French fries was measured by drying them within an oven instrument. Mean moisture and oil content of potato stripes was measured. The h value was estimated and its changes studied during process using heat energy balance between the sample and oil by assuming that total heat transferred by convection from oil to potato is equal to the sum of energy spent on heating potato and energy spent on water evaporation. Moreover, changes in the fraction of total heat used for evaporation at different temperatures were expressed as an empirical model. Results and Discussion: The results showed that the temperature at the center increased up to the evaporation temperature (“A” zone: about 60 seconds after process beginning). Then, it remained constant at this temperature for a while due to evaporation (“B” zone: about from 60 s till 160 s). This constant temperature period decreased as temperature increased. After this period, the center temperature approached to that of oil (“C” zone: increasing product surface temperature to oil temperature). These various stages of the process were separated. The moisture loss rate was high at the beginning of frying and oil uptake increased as the moisture content diminished. As oil temperature increases, the sample moisture content for the same frying period decreases since an increase in temperature results in a higher kinetic energy for water molecules leading to a more rapid moisture loss in form of vapor. The heat transfer coefficient is increased as the oil temperature increased and at the first time of process observed higher h value. It was due to more water loss rate and so the higher turbulence within the oil before crust formation and for elevated temperatures. The maximum heat transfer coefficient for the temperatures of 175, 160 and 145 °C is estimated 943.68, 847.81 and 682.64 W/m2°C, respectively. Estimated h value also shows a linear increase with water loss rate. Since most of the energy used is associated with the evaporation of water present in the potato, for lower temperatures, the fraction of total heat needed to complete the evaporation is higher and it also represents lower h values by reducing the oil temperature. Also, the variation in the fraction of total heat used for water evaporation showed exponential rise to maximum behavior. Conclusion: The proposed model for studying evaporation heat fraction fitted experimental data properly, with standard error values range of 0.01-0.03. Evaporation heat fraction could have been affected by oil temperature changes, water loss rate and h value (linear depend with the water loss rate) during process.
Zohreh Karami; Habibollah Mirzaee; Zahra Emam-Djomeh; Alireza Sadeghi Mahoonak; Morteza Khomeiri
Abstract
In this research, anti-microbial activity of ethanolic extract of licorice root against food spoilage microorganisms (Lactobacillus delbrueckii, Leuconostocmesenteroides, Candida krusei, Saccharomyces cerevisiae) in an orange flavored carbonated soft drink was investigated. The MIC and MBC of extract ...
Read More
In this research, anti-microbial activity of ethanolic extract of licorice root against food spoilage microorganisms (Lactobacillus delbrueckii, Leuconostocmesenteroides, Candida krusei, Saccharomyces cerevisiae) in an orange flavored carbonated soft drink was investigated. The MIC and MBC of extract against Lactobacillus delbrueckii was 0.7 mg/ml and 0.8 mg/ml respectively, and against Leuconostoc mesenteroides MIC and MBC were 0.9 mg/ml. Also, MIC and MBC against Candida krusei and Saccharomyces cerevisiae using microdillution method was equal to 0.8mg/ml. In this research an orange flavored beverage preserved with natural licorice root extract was formulated and parameters such as phenolic contents, changes in population of aerobic mesophilic bacteria, yeast and acid-resistant micro-organisms during storage time were evaluated. Concentrations of 1000, 1500 and 2000 ppm of licorice root extract and samples containing 1000, 1500 and 2000 ppm of licorice root + 50% benzoate was used to control growth of food spoilage microorganisms in the beverage. Samples enriched with licorice root and a blank sample (commercial sample) were kept at room temperature and microbial counts were monitored during 1, 10, 20, 30, 40, 50, 60, 70, 80 and 90 days. Results of microbial examinations showed that the use of licorice root extract preserved the orange flavor carbonated soft drink during 90 days storage. Also, phenolic compounds showed good stability during 90 days storage time.