Food Engineering
Fakhreddin Salehi; Moein Inanloodoghouz; Sara Ghazvineh; Parisa Moradkhani
Abstract
IntroductionSour cherries (Prunus cerasus L.) are relatively diverse and broadly distributed around the world, being found in Asia, Europe, and North America. Sour cherries have unique anthocyanin content, and rich in phenolic compounds. The fruits are generally used for processing purposes, such as ...
Read More
IntroductionSour cherries (Prunus cerasus L.) are relatively diverse and broadly distributed around the world, being found in Asia, Europe, and North America. Sour cherries have unique anthocyanin content, and rich in phenolic compounds. The fruits are generally used for processing purposes, such as for production juice and jam. The fruits of sour cherries can also be frozen and dried. One of the best methods for the preservation of agricultural product is drying, which involves removing water from the manufactured goods. Dried sour cherries have a long shelf life and therefore may be a fine alternative to fresh fruit all year round. There are no reports on the effect of microwave pretreatment on the hot air drying kinetics of sour cherries in the literature. Hence, the purpose of this study was to estimate the impacts of microwave pretreatment on the total phenolics, drying time, mass transfer kinetic, effective moisture diffusivity, total color difference index, shrinkage and rehydration of sour cherry. In addition, the moisture ratio changes of sour cherry during drying were modeled. Material and MethodsSour cherries were purchased from the market at Bahar, Hamedan Province, Iran. The average diameter of fresh sour cherries was 1.6 cm. In this study, the water content of fresh and dried sour cherries was calculated using an oven at 103°C for 5 h (Shimaz, Iran). In this research, the effect of microwave time on the drying time, effective moisture diffusivity coefficient and rehydration of sour cherries was investigated and drying kinetics were modeled. To apply the microwave pretreatment on the sour cherries, a microwave oven (Gplus, Model; GMW-M425S.MIS00, Goldiran Industries Co., Iran) was used under atmospheric pressure. In this work, the influence of the microwave pretreatment time at five levels of 0, 30, 60, 90, and 120 s (power=220W) on the cherries was examined. After taking out the treated sour cherries from microwave device, the samples were placed in the hot-air dryer (70°C) as a thin layers. The dehydration kinetics of sour cherries were explained using 7 simplified drying equations. Fick's second law of diffusion using spherical coordinates was used to calculate the moisture diffusivity of sour cherries at various hot-air drying conditions. The rehydration test was conducted with a water bath (R.J42, Pars Azma Co., Iran). Dried sour cherries were weighed and immersed for 30 min in distilled water in a 250 ml glass beaker at 50°C. Results and DiscussionThe results showed that microwave treatment led to an increase in moisture removal rate from the sour cherries, an increase in the effective moisture diffusivity coefficient, and, consequently, a decrease in drying time. By increasing the microwave time from 0 to 12 s, the average drying time of sour cherries in the hot-air dryer was decreased from 370 min to 250 min (p<0.05). The average effective moisture diffusivity coefficient calculated for the samples placed in the hot-air dryer was 4.25×10-10 m2/s. Increasing the microwave time from 0 to 120 s increased the average effective moisture diffusivity coefficient by 85%. The maximum amount of phenolic was related to the sample treated with microwave for 90 seconds. Microwave treatment time had no significant effect on the rehydration of dried sour cherries. ConclusionKinetic modeling of weight changes of sour cherries during drying was carried out using models in the sources, followed the Page model was selected as the best model to predict moisture ratio changes under the selected experimental conditions. The mean values of sum of squares due to error, root mean square error, and r for all samples ranged from 0.001 to 0.007, 0.005 to 0.017, and 0.997 to 0.999, respectively. Generally, 120 s pre-treatment by microwave is the best condition for drying sour cherries.
Atefeh Pourmahdi; Mohebbat Mohebbi; Ashraf Gohari Ardabili; Mehdi Varidi; Mohammad Reza Salahi
Abstract
Introduction: Potato is one of the most consumed and highly nutritious vegetables with high energy, dietary fiber, phytochemicals, vitamins, and minerals which offer great benefit for utilization as functional food ingredient. The dried potato powder can be used in formulation of many foods like soups, ...
Read More
Introduction: Potato is one of the most consumed and highly nutritious vegetables with high energy, dietary fiber, phytochemicals, vitamins, and minerals which offer great benefit for utilization as functional food ingredient. The dried potato powder can be used in formulation of many foods like soups, snacks, sauces, noodles, etc. The foam mat drying involves the dehydration of a thin layer of foam followed by its disintegration in order to obtain a powder which can be easily reconstituted in water when added to other foods. Because of the porous structure of the foamed materials, mass transfer is enhanced leading to shorter drying times and consequently acquiring higher quality in the dried product. Food foams can be considered as biphasic systems where a gas (dispersed phase) is embedded in a continuous liquid phase. The foam properties such as structure, density and stability have important influence on moisture migration during drying and accordingly, the quality of final product. Foams that do not collapse for at least 1h are mechanically or thermally stable for the entire drying process. Response surface methodology (RSM) is a combination of mathematical and statistical techniques which used to investigate the interaction effects of independent variables on responses. There is considerable information on foam-mat dried food powders, but there is not any scientific literature that related to study on foam-mat drying of potato puree. The present research was thus focused on optimizing the foaming conditions (potato puree: gum solution ratio; Arabic gum (AG) concentration as the stabilizer and whipping time [WT]) to minimize foam density (FD) and drainage volume (DV) using RSM. Likewise, choosing a suitable model for thin-layer drying of foam and the effect of different drying temperatures (45, 60 and 80°C) on drying behavior were investigated, and the effective moisture diffusivity and activation energy were calculated. The effects of drying temperatures on water activity (aw) and water binding capacity (WBC) were also investigated.
Material and methods: Fresh potato was purchased from a local market (Mashhad, Iran). Arabic gum was procured from Sigma Chemical Company (USA). For preparation of potato puree, fresh potatoes were washed and peeled by steel knife and were washed again and additional water was taken absolutely and then crushed by Phillips home crusher (600W) with maximum speed for 3 minutes to get a homogeneous puree. Based on preliminary tests, AG solutions were prepared by dissolving a suitable amount of the selected gum powder in distilled water and stirring with a magnetic stirrer to obtain a uniform solution. This solution was refrigerated at 4°C overnight to complete hydration. RSM was used to estimate the main effects of the process variables on FD and DV in potato puree foam. The experiment was established based on a face-centered central composite design (FCCD). The experimental range was chosen on the basis of the results of preliminary tests. The independent variables were consisted of potato puree: gum solution ratio (1:1 –2:1 w/w), AG concentration (0.1–0.9% w/w) and WT (3–9 min). According to the experimental design, to prepare 100 g of samples, appropriate amount of potato puree and AG solution were mixed in a 250-mL beaker. The mixture was then whipped with a kitchen mixer (model no. SM88, Sonny, China) at a maximum speed of 1,500 rpm at ambient temperature during given time which was recommended by Design-Expert software. The density of foamed potato puree was determined in terms of mass over volume and expressed in g/cm3. In order to assess foam stability, the drainage test was performed for 1h. To evaluate drying behavior of the optimized foam, drying was carried out in a batch-type thin-layer dryer at temperatures of 45, 60 and 80°C on 3 mm thickness. Ten thin-layer drying models were evaluated in the kinetics research. The higher value of R2 and lower values of χ2, RMSE and SSE were selected as the basis for goodness of fit. Fick’s diffusion equation for particles with a slab geometry was used for calculation of effective moisture diffusivity. The foamed potato puree spread on a tray was considered as slab geometry. Activation energy was calculated by a simple Arrhenius-type relationship, by plotting the ln (Deff) against the reciprocal of absolute temperature (1/T). Furthermore, the effects of drying temperatures on aw and WBC of powders were investigated.
Results and discussions: The quadratic model was selected as a suitable statistic model for both FD and DV. ANOVA showed that this model is significant for both responses. Moreover, lack-of-fit was not significant for response surface models at 95% confidence level, indicating this model is adequately accurate for predicting responses. The optimum values of variables for best product quality in terms of minimum FD and DV corresponded to potato puree to gum solution ratio 2:1(w/w), AG 0.77% (w/w) and WT 6.80 min. The amount of FD and DV for foam at these optimum conditions were 0.30 g/cm3 and 5 ml, respectively.
The result showed that when the drying temperature increased, the drying time decreased. This was due to the quick removal of moisture at higher temperature. Drying rate (DR) versus moisture content of potato puree foam-mats figure showed that DR was higher during the initial stage as compared with the final stage and foam-mat drying was occurred principally in the constant rate period. Due to the increase in surface area and the porous structure, removal of water from the inner surface of potato puree foam to the outer surface was fast enough to preserve the surface moisture. The rate of movement of moisture from the inner surface to the exposed surface decreased with decreasing moisture content, which indicates that the DR decreased and the falling rate period started. The effective moisture diffusivity varied from 3.286×10-9 to 8.032×10-9 m2/s with activation energy value of 30.97 kJ/mol. Statistical analysis results showed that the Weibull distribution model provide the highest R2 and lowest values of χ2, RMSE and SSE at all drying temperatures. The temperature elevation reduced aw. This is due to the fact that at higher temperatures, the rate of heat transfer to the sample would increase, therefore, it provides greater driving force for moisture evaporation which results the dried foams with reduced aw. Drying temperatures did not show any significant effect on WBC of powders.