Food Engineering
Seyed Mohammad Ali Razavi
Abstract
Viscosity (µ) and density (ρ) are important physical roperties for analysis of membrane processes performance and for designing a new membrane process. In addition, the energy requirement for fluid pumping is depend on these two physical properties magnitiude. In this study, firstly, the effects ...
Read More
Viscosity (µ) and density (ρ) are important physical roperties for analysis of membrane processes performance and for designing a new membrane process. In addition, the energy requirement for fluid pumping is depend on these two physical properties magnitiude. In this study, firstly, the effects of different process factors such as transmembrane pressure (51, 101, 152, 203 and 253 kPa), temperature (30,40 and 50ºC) and the effects of physico-chemical properties such as milk pH (6.67, 6.43, 6.25 and 5.97), milk fat percent (0.09, 1.19, 2.4, 3.26) on the viscosity and density of permeate have been considered. Two linear multiple regression models were then developed by Sigmastat software for prediction of µ and ρ during milk ultrafiltration. The experimental results showed that µ and ρ decreased as fat percent or temperature increased. pH had no considerable effect on µ and ρ. Furtheremore, increasing transmembrane pressure to 152 kPa led to an increase in both µ and ρ, while further increasing to 253 kPa resulted in a decrease in both µ and ρ. The statistical modeling results showed that the viscosity is only significantly depend on temperature and there was an excellent agreement between actual and predicted data (R=0.976), whereas the density is siginificantly depends on both temperature and fat percent and there was a good agreement between experimental and predicted data (R=0.904).
Shadi Basiri; Fakhri Shahidi
Abstract
Introduction: Morus Alba, known as white mulberry, is a short-lived, fast-growing and small to medium sized mulberry tree, which grows to 10–20 meters tall. The species is native to northern China, and is widely cultivated and naturalized elsewhere. The fruit is 1–2.5 cm long in the species in the ...
Read More
Introduction: Morus Alba, known as white mulberry, is a short-lived, fast-growing and small to medium sized mulberry tree, which grows to 10–20 meters tall. The species is native to northern China, and is widely cultivated and naturalized elsewhere. The fruit is 1–2.5 cm long in the species in the wild, it is deep purple, but in many cultivated plants it varies from white to pink, being sweet and bland. The fruits are also eaten, often dried or made into wine or vinegar. In traditional Chinese medicine, the fruit is used to treat prematurely grey hair, to tonify the blood, and treat constipation and diabetes. White mulberry is a fruit with high nutritional quality. The shelf life of mulberry is short due to its high moisture content. Dried mulberry and its molasses are popular products from mulberry fruit. Hydrocolloids are used in fruit snacks formulations to create novel texture, increase stability for their water-holding capacity, improve texture and have an impact on flavor release and other structural and sensory properties in the respective products. Hydrocolloids are also widely used in the food industry as thickeners, stabilizers and gelling agents in various products including ice cream, sauces, jellies and pastille products. Guar gam is kind of long-chain galacto-mannan with high molecular weight, obtained from endosperm of guar plant. This type of synergistic behavior among polysaccharides is commercially valuable, because it creates a novel texture and a more desirable structure. The aim of this research is to produce mulberry pastille as a novel and value added product with long shelf life. Beside it can be introduced as a healthy snack replacing sugar. Materials and methods: The materials include mulberry puree, hydrocolloids (Gelatin and guar) and citric acid. Berries were collected from the gardens around Mashhad (Iran). Guar was purchased from Sigma Chemical Company, citric acid was purchased from Merk Chemical Company, Germany. Gelatin (0, 1, and 2 %) and Guar (0, 0.5, and 1 %) were used for pastille formulations. To produce fruit pastille based on mulberry puree, the prepared puree was mixed into hydrocolloids. After measure pH and moderating to PH = 4.3 by adding acid citric in 40 % concentration and controlling the Brix degree to constant Brix of 45, the mixture was prepared. Then the prepared mixture was poured into a network framework of steel origin in the cavities with 1.2×1/2 and the molds were hold in the refrigerator for 2 hours with 4°C to fasten the gel. The obtained gel was taken out of the mold cavities and placed in a glass plate. The samples were then dried at 70° C in a hot air drier with airflow rate of 1.5 m/s for 6 hours. The samples were evicted every 30 minutes. Parameters such as color, sensory and textural characteristics of samples were investigated. Statistical design was 2 factors factorial with three replicates adopted completely randomized design. Results and Discussion: The results of texture evaluation showed that increasing guar gum improves the cohesion, elasticity and chewiness of the samples, while their adhesion were decreases. Conclusion: Mulberry pastille including 1% Guar and 1% Gelatin having the lowest amount of firmness, adhesion, chewiness and suitable color characteristics, was determined as the best formulation among the other investigated samples.
Younes Zahedi; Hadi Mahdavian Mehr; Seyed Mohammad Ali Razavi
Abstract
Identification of a new source of hydrocolloids is of interest due to their important effects on the textural attributes of food products. The objective of this study was to investigate the extraction conditions of Plantago major L. seed mucilage using a central composite rotatable design of response ...
Read More
Identification of a new source of hydrocolloids is of interest due to their important effects on the textural attributes of food products. The objective of this study was to investigate the extraction conditions of Plantago major L. seed mucilage using a central composite rotatable design of response surface methodology. Temperature (25–85°C), pH (3–9) and water to seed ratio (50:1-50:4) were the factors investigated. Results showed that temperature was major factor in the extraction yield, whereas water to seed ratio and pH had minor effects on the yield. The maximum and minimum yields were 18.95% (conditions: temperature= 85 °C, water to seed ratio = 31.3 and pH= 6) and 6.35% (conditions: temperature = 25 °C, water to seed ratio= 31.3 and pH= 6), respectively. The optimal conditions were obtained at the temperature of 60 °C, water to seed ratio of 48.9 and pH of 3 in which predicted value for the extraction yield was 11.84%. The rheological properties of the mucilage, extracted at the optimal conditions, were investigated as a function of concentration at three levels of 3, 4 and 5% w/v, and shear rate ranged from 14 to 300s-1. Mucilage dispersions showed non-Newtonian shear-thinning behavior at all studied concentrations. The Power law model well described the rheological behavior of the mucilage solutions with high determination coefficients (R2>0.99). The flow behavior index (n) varied in the range of 0.30 to 0.36. The consistency coefficient (k) was in the range 6.13-17.81 Pa.sn. Overall, Plantago major L. seed mucilage could be attended as a new beneficial source for use as a food thickening agent.
Lida Shashavani Mojarrad; Ali Rafe
Abstract
Textural, thermal and microstructural properties of single component gels and binary composite gels (BCG) of high amylose corn starch (Hylon VII) mixed with wheat flour at different wheat flour/Hylon VII (WF/H) ratios (95:5, 90:10 and 85:15) and temperatures (100, 121 and 135ºC) were investigated. ...
Read More
Textural, thermal and microstructural properties of single component gels and binary composite gels (BCG) of high amylose corn starch (Hylon VII) mixed with wheat flour at different wheat flour/Hylon VII (WF/H) ratios (95:5, 90:10 and 85:15) and temperatures (100, 121 and 135ºC) were investigated. The visual appearance showed that as Hylon VII was increased in BCG, the stronger gel was achieved. Textural results confirmed by increasing Hylon VII, the firmness was increased, but the springiness, cohesiveness and adhesiveness were reduced. Moreover, the BCG at high temperatures showed the higher level of Hylon VII, the higher water solubility index would be achieved. The gelatinization enthalpy (ΔH) and peak gelatinization temperature (Tp) increased by improving the content of amylose in BCG. Hylon VII showed the lowest peak viscosity and the BCG gel containing high amount of Hylon VII indicated a reduction in the paste viscosity. The differences in the microstructure of WF and HylonVII gels were also reflected the pasting properties of the gels. Consequently, BCG of WF/H develops the stronger gel which can withstand at high thermal processing such as retort to improve the shelf-life of the final product.
Shakiba Kianiani; Mohammad Javad Varidi; Mehdi Varidi
Abstract
Introduction: Meat and meat products contribute about 20% to human fat consumption. Fat is the main source of energy and the base of fat soluble vitamins. Besides, it improves cooking yield and water holding capacity, conserves taste and flavor of products and affects the emulsion stability, juiciness, ...
Read More
Introduction: Meat and meat products contribute about 20% to human fat consumption. Fat is the main source of energy and the base of fat soluble vitamins. Besides, it improves cooking yield and water holding capacity, conserves taste and flavor of products and affects the emulsion stability, juiciness, costumer acceptability and structural and rheological properties of meat products. But Animal fat contains a relatively high amount of saturated fatty acids and cholesterol, which can increase the risk of cardiovascular disease, diabetes, cancer types and obesity. Thus, the meat industry is interested in merchandising fat-reduced meat products without neglecting the positive effects of fat on flavor and texture.
Various researches have shown that the substitution of fat on a polysaccharides base such as fibers, starch, gums, and gels have improved and modified the texture, residual moisture and freeze stability, and decreased the price of the products.
Aloe vera leaf gel contains about 99 – 99.5 % water and 1 - 0.5 % of the total solid content. On dry matter basis aloe vera gel consists of 55% polysaccharides, 17 % sugar, 16 % mineral, 7% protein, 4% lipids and 1% phenolic compounds (Lawless et al., 2014). The most important carbohydrates of aloe vera gel are the long chain polysaccharides, comprising glucose and mannose, known as the glucomannans [β (1, 4) – linked acetylated mannan]. All the solid content of aloe vera gel are surrounded by polysaccharide mucilage layer.
Literature review pointed out there have been little investigations into the functionality of aloe vera gel in the emulsion meat products. According to the importance of producing low - fat meat products from one hand as well as the nutritional values and health characteristics of aloe vera gel on the other hand, this study was designed to replace the fat with aloe vera gel in the production of low - fat German sausage.
Material and Methods: Sausage samples containing 40% of red meat (German sausage) were produced based on the conventional plants formula. animal fat and vegetable oil replaced by 0, 50 and 100% aloe vera gel in the German sausage formulation. All samples were cooked at 90°C temperature to achieve the core temperature of 70° C, followed by cooling, they were kept in the refrigerator (4°C) until the subsequent experiments. The AOAC (2000) methods were used for measuring the moisture content, the amount of fat, ash and protein. The amount of carbohydrate was calculated based on the calculation of the total weight difference from the sum of ash, protein, fat and moisture (according to the method FAO / WHO). The amount of energy was computed based on the total amount of energy from fats, proteins and carbohydrates. To measure the pH of samples by pH meter, method of choe et al (2013) was followed. The color analysis was done on the surface of sausage cuts by chromometer. The parameters of color include L* (lightness), a* (redness) and b* (yellowness) were measured. Texture parameters include hardness(N), cohesiveness, springiness (cm), gumminess (N), chewiness (N.cm), adhesiveness were determined by texture analyzer as described by Bourne (1978). The sensory attributes were evaluated by 10 trained panelists. A five-point hedonic scale rating (1= very bad, 2=bad, 3= neither bad nor good, 4= good, 5= very good) was carried out.
Results and Discussion: Physicochemical properties analysis indicated significant differences among meat products (p ≤.0.01). The addition of aloe vera gel resulted a decrease in fat percentage and amount of energy, an increase in moisture and carbohydrate, but the amount of pH, protein and ash content did not change. This study showed that reducing the fat content and replacing by aloe vera gel caused a significant difference in the amount of energy (p≤.0.01).With respect to the significant contribution of fat in the production of energy, the amount of energy was reduced as expected by reducing the fat of the formulation. The results indicated that the value of L * showed the negative and positive trends with animal fat and vegetable oil changes, respectively (p≤.0.01). b* decreased by reducing the amount of fat and oil (p≤0.01), but the value of a* always remained constant (p˃0.05). The presence of aloe vera gel in sausage caused a reduction in hardness, adhesiveness and gumminess (p<0.05), while it did not affect the amount of adhesiveness and cohesiveness of samples (p˃0.05).
The substitution of fat with aloe vera gel had a significant effect on the sensory characteristics of German sausage (p≤.0.01). By reducing fat and oil and adding aloe gel to the German sausage formulation, color acceptance score was decreased. In terms of panelists, the blank sample had the best color and the fifth sample color had the lowest score. Juiciness of the samples was increased by increasing the amount of gel. The results also showed that the fifth sample received the maximum score of juiciness. Sausages smell acceptance negatively changed by reducing the fat content and adding aloe vera gel. Third and fourth treatments got the highest texture score. Also, the third sample had the highest scores for taste and general acceptance. Chewiness analyzing showed that by increasing the amount of fat replacement the rate of this factor decreased. as well as the maximum rate of chewiness was related to the blank sample.
Rahil Rezaei; Morteza Khomeiri; Mahdi Kashani-Nejad; Mostafa Mazaheri Tehrani; Mehran Alami
Abstract
β-d- glucan as a soluble dietary fiber, has many desirable physical and physiological characteristic. In this research the effect of β-d- glucan and aging conditions (Time and Temperature) on some physicochemical and textural properties of frozen soy yogurt was investigated. Three variables ...
Read More
β-d- glucan as a soluble dietary fiber, has many desirable physical and physiological characteristic. In this research the effect of β-d- glucan and aging conditions (Time and Temperature) on some physicochemical and textural properties of frozen soy yogurt was investigated. Three variables including concentration of oat β-d- glucan (0, 1 and 2%), aging time (2, 13 and 24 h) and aging temperature (2, 4 and 6°C) were studied. The results showed that the addition of β-d- glucan to frozen yogurt increased viscosity, overrun, hardness and fat destabilization but the melting resistance and L*value were decreased. In terms of aging conditions, it was revealed that increasing aging time could improve the quality of product whereas higher temperature had an undesirable effect on the quality of frozen soy yogurt. Longer aging time caused an increase in viscosity, hardness, fat destabilization and melting resistance. By increasing aging temperature, fat destabilization, overrun and viscosity were decreased and melting rate was increased. It was concluded that addition of β-d- glucan as a dietary fiber and prolonged aging time at low temperature could adjust textural properties of frozen soy yogurt and improve quality of this frozen dessert.
Maryam Mohammad Khani; Mohammad Fazel
Abstract
Introduction: Increasing society's desire to consume healthy and low-calorie foods has led to the production of low-fat and healthy foods. In this study, the effect of oil replacement with tofu cheese and Persian gum on physicochemical, textural, rheological and sensory properties of Mayonnaise sauce ...
Read More
Introduction: Increasing society's desire to consume healthy and low-calorie foods has led to the production of low-fat and healthy foods. In this study, the effect of oil replacement with tofu cheese and Persian gum on physicochemical, textural, rheological and sensory properties of Mayonnaise sauce as well as its particle size, were investigated. Tofu was replaced with fat at three concentration levels of 20, 35 and 50% and Persian gum was added to the sauce at three concentrations of 2.5, 3, and 3.5%. The control sample contained 60% fat and guzanthan gum. With increasing tofu, pH and acidity increased and with increasing Persian gum acidity decreased. With increasing tofu, histological test (hardness, adhesiveness, adhesive force, work done to hardness, apparent modulus) decreased and with increasing Persian gum, their increased. With increasing tofu, decreased particle size. With increasing gum until 3%, average of particle size decreased and with more increase of gum, average of particle size increased. The rheological behavior of all samples at a shear rate of 0.01 to 1000 (on second) showed that the viscosity decreased with increasing tofu decreased and with increasing gum, increased. In all samples, with increasing shear rate, the viscosity was decreased, and the behavior of the samples was pyseudoplastic and the parameters followed the power law model. Sample with 20% tofu cheese and 3.5% Persian gum as top samples, whose properties are closer to fatty mayonnaise and can be called Mayonnaise with reduced fat. Materials and methods: Physical and thermal stability tests of the emulsion were performed with a centrifuge machine. PH test was performed using pH meter and acidity test in terms of acetic acid percentages. The fat percentage was performed with a Soxhlet. The texture properties were performed by back extrusion test and the parameters of hardness, adhesiveness, adhesiveness force, apparent modulus and force required to squeeze were calculated. The particle size was measured using a dynamic light dispersion apparatus, and the average particle size, mod, and D50 of the emulsion particles of oil were investigated. The rheological behavior was performed by the rheometer and sensory evaluation was conducted by the hedonic method. Statistical analysis was performed by using SPSS software and the mean comparison test at 5% probability level and in the form of factorial test. Results & Discussion: In the physical and thermal stability test of the emulsion, no two phases were observed in the samples. This could be due to the strong structure of the emulsion and the high viscosity of the continuous phase. By increasing the tofu value, the pH increased, which can be attributed to the decrease in the concentration of hydrogen ion or the increase of the aqueous phase. With increasing amount of gum, there is no change in pH, because the Persian gum has a neutral nature. Increasing the amount of gum did not affect acidity. As the tofu increased, acidity increased, and this increase was very slight, which can be attributed to buffering mode of tofu due to high amounts of high amino acids. By increasing the tofu percentage, the percentage of fat decreases because the percentage of fat in tofu cheese is law and its protein content is much. The increase in gum did not affect the amount of fat, because Persian gum structure was made up of saccharides. The tofu increase up to 35% reduced the texture properties, because the aqueous phase increased, with increasing gum percentage, texture properties increased because it produced a strong gel structure.With the increase in tofu content, the particle size of the oil decreased, because with increasing the amount of fat, the particle size increased. By adding gum the particle size decreased to 3% and then increased, because in the Persian gum structure, there are insoluble branches and the solubility of these branches is low. In the evaluation of rheological behavior, flow behavior test was investigated; viscosity of all samples was reported at shear rates of 0.1, 1, 10, 100/ sec. In all samples, the viscosity decreases with increasing frequency. By increasing the gum at a constant shear rate, the viscosity increased, which can be explained by the fact that the formation of a stronger structure in the presence of higher concentrations of gum. By increasing the shear rate at a constant concentration of gum, the viscosity decreased, and the increase in gum with increasing shear rate also reduced the viscosity and sauce had profit and plastic behavior that could be due to the opening of the bonds. As the tofu percentage increased in all shear rates, viscosity decreased and by increasing the tofu value at a constant shear rate, the viscosity decreased, and the increasing tofu with increasing shear rate reduced viscosity due to high moisture content of the cheese. The rheological parameters of mayonnaise sauce were checked in accordance with the power law. As the gum increased, the consistency coefficient increased , because the number of molecules with high molecular weight in the liquid phase increased, with increasing the percentage of tofu cheese, the coefficient of consistency decreased. The flow behavior coefficient does not have a clear trend, and since it is less than 1, the samples are non-Newtonian. In the strain scan test in lower strains, mayonnaise always has linear viscoelastic behavior. By increasing the gum concentration, both the elastic and viscous components are transported to higher values, which can be due to more interaction between the Persian gum and the components of the emulsion. In the sensory evaluation of the samples, the addition of gum and tofu percentage was not effective.With regarding the data of the tests, mayonnaise sample was identified with the replacement of 20% tofu cheese and 3.5% Persian gum as a superior sample, which its properties are closer to fatty mayonnaise and can be classified as Mayonnaise with law Fat. An extensive medicinal property of Persian gum with tofu cheese in mayonnaise sauce makes it a rich and very good source.
Mohsen Azadbakht; Mohammad Vahedi Torshizi; Fatemeh Noshad; Arash Rokhbin
Abstract
The orange samples were cut into slices with a thickness of 4 mm and treated with ohmic method for 3, 5, and 7 min as ohmic pre-treatment in three voltages 30, 50 and 70 V. Then, they were dried in three replicates using a microwave dryer and at three powers of 90, 360, and 900 W. The statistical analysis ...
Read More
The orange samples were cut into slices with a thickness of 4 mm and treated with ohmic method for 3, 5, and 7 min as ohmic pre-treatment in three voltages 30, 50 and 70 V. Then, they were dried in three replicates using a microwave dryer and at three powers of 90, 360, and 900 W. The statistical analysis results showed that the ohmic time, ohmic voltage and microwave power are significant for the energy and exergy efficiency and specific energy and exergy loss at 1% level. The highest energy and exergy efficiency was observed at 900 W and in the ohmic time of 7 min. The highest energy and exergy efficiency was observed at 59.041% and 47.76%, respectively. The maximum energy loss was seen at 90 W and ohmic time of 3 min. The microwave power, ohmic time, and ohmic voltage were statistically significant for all the parameters (energy and exergy) such that with increasing them, the energy and exergy efficiency increased, while the specific exergy and energy loss decreased.
Elnaz Milani; Fakhri Shahidi; Elham Ansarifar; Mohammad KalilianMovahed; Farideh Salehipour
Abstract
Introduction: Extruded snacks were among the most commercially successful extruded foods. Extrusion cooking is the process extensively used for the production of snacks which are mainly produced from cereal flour or starches. Extruded snacks are normally high in calories and fat with low content ...
Read More
Introduction: Extruded snacks were among the most commercially successful extruded foods. Extrusion cooking is the process extensively used for the production of snacks which are mainly produced from cereal flour or starches. Extruded snacks are normally high in calories and fat with low content of protein, fiber, and perceived as unhealthy food to many consumers. Several attempts to improve the nutritional profile of extruded starch by using food by-products have been reported (Onwulata et al., 2001; Stojceska et al., 2008). Zizyphus jujube (Rhamnaceae) is widely distributed in Iran and the fruit of this plant has gained wide attention in native herbal medicine for the treatment of a broad range of disorders. Chemical analysis of the fruit has shown the presence of antioxidants. The high consumption of low-value meals and malnutrition among the population, especially children and adolescents, is one of the problems that exists today in society, Therefore, in this research, production of high-nutritional snack with jujube flour was studied. Materials and methods: Extrusion: In this study, a parallel twin-screw extruder (SAIXIN, model DS56, China) was applied, screw diameter of 15 mm, die diameter of 3 mm, and extrusion temperature of 180°C. Central composite statistical design was used to study the effect of feed moisture (12, 16, 18%), jujube flour addition (5, 10, 15%) and screw speed (120, 150, 180 rpm) on physicochemical properties, texture and color of expanded extrudates based on corn-wheat flour (50-50%). Bulk density was calculated using AACC (2000). The WSI of the dry solids regained through the evaporation of the supernatant obtained from the water absorption test was calculated. Textural measurement: The hardness of the extruded snacks was measured using Texture Analyzer (TAXT plus, England). The cylinder steel probe (2 mm diameter) was set to move at a speed of 1 mm/s. The samples were punctured by the probe to a distance of 8 mm. the color of samples was measured using an image processing technique (Lotfi Shirazi et al., 2020). The color parameters L* (lightness), a*(redness), b*(yellowness) values of the samples were obtained. Response surface methodology was applied for experimental data using a commercial statistical package, Design Expert (version 8.0) for the generation of response surface plot and statistical analysis of the experimental data. The second-order polynomial model was selected to predict the optimal point of the responses. Results & Discussion: Results showed that the addition of jujube flour independently increased the density 0.33, hardness 35.73 N, solubility 42% and redness (a*) 3.41, and reduced the color brightness parameter (L*) 89.1 of the samples. Similar fiber effects for pineapple pulp (Salani et al., 2014), a mixture of barley flour and grape pulp (Altan et al., 2009) and beet fiber (Lue et al., 1994) has been observed. The reduction of bulk density in samples with increasing screw speed is probably due to the starch gelatinization. When gelatinization of the starch material increased, the volume of extruded product also increased giving low density to the samples (Hagenimana et al., 2006). The WSI is a parameter which indicates the degradation of starch granules (Sharma et al., 2015). WSI decreased with increasing feed moisture and increased with increasing jujube flour or screw speed. Increase in solubility of extruded products under mild extrusion condition could result from dispersion of amylose and amylopectin molecules during gelatinization; while, the formation of low molecular weight compounds under severe conditions (low moisture and high temperature) is the main reason for an increase in flour solubility (Colonna et al., 1984). Color changing during extrusion process can provide important information regarding the degree of browning and Maillard reaction, and also pigment degradation. Increasing the feed moisture increased flour L* while it decreased the a* and ∆E of the final product. This is probably due to the decrease in mass residence time inside the extruder which causes shorter residence time necessary for non-enzymatic darkening (Lazou and Krokida, 2011). Texture is one of the most important sensory properties of extruded products in the development of snack products. Increasing the feed moisture and jujube flour increased hardness of samples. This can be explained by the effect of fiber on cell wall thickness. However, the simultaneous effect of two parameters of screw speed and jujube flour improved the properties of the snacks, by which the increase of the screw speed may cause a decrease of the starch viscosity and then lead to extrudates with reduced hardness 1.79 N. Optimum conditions for puffed snack production was found to be 13.19% feed moisture content, 6.30 % jujube flour, 122.2% screw speed.
Food Technology
Farinaz Saremnejad; Mohebbat Mohebbi; Arash Koocheki
Abstract
Introduction: Increasing diet-linked diseases and following that the consumers ongoing desire for healthier foods makes reduced-fat products of outstanding importance in the food industry. This study aims to reduce the fat content of sauces as a traditional condiment through the incorporation ...
Read More
Introduction: Increasing diet-linked diseases and following that the consumers ongoing desire for healthier foods makes reduced-fat products of outstanding importance in the food industry. This study aims to reduce the fat content of sauces as a traditional condiment through the incorporation of air bubbles in the oil phase. Response surface methodology (RSM) was used for identifying the effect of aeration process variables on foam properties. However, the main challenge of reduced-fat foods is to ensure their acceptability. Recently fat taste has been introduced as a sixth basic taste. Fatty acids have been considered as the stimulus for this taste. So, linoleic acid as the stimulus for fat perception was added to the formulation to develop a product that tastes almost like full-fat versions but contains less fat. The advantages of aerated foods over conventional products are clear. Nonetheless, the determination of quality and sensory parameters during storage, marketing, and consuming is necessary. For this purpose, produced aerated sauces, along with commercial full- and reduced-fat sauces, were compared by measuring the acidity, pH, oxidative stability, and sensory properties. Materials and Methods: Required amounts of mono- and diglyceride (MDG) and oil were mixed. Then nonaqueous foams were generated by whipping the MDG-oil mixtures. In the optimization study, the effect of MDG concentrations (2, 6, and 10 wt. %), whipping speed (1100, 3250, and 5400 rpm) and time (5, 15, and 25 min) on foam properties (overrun and drainage) was analyzed using RSM. The foam obtained from the optimum process condition was used to produce an aerated reduced-fat sauce. Sauce preparation was performed according to a usual recipe with the difference that the fat content was replaced by nonaqueous foam. Furthermore, 3.00 mM of linoleic acid as a fat taste stimulus was added to the formulation. First, an aqueous phase containing ingredients was prepared. Then nonaqueous foam was progressively incorporated in the aqueous phase. For the purposes of comparison, aerated sauces (0 and 3.00 mM stimulus), along with commercial sauces (zero, low, and full-fat), were analyzed by measuring the pH, acidity, oxidative stability, and sensory properties. Results and Discussion: According to the results of the optimization study, the desired foam (overrun ≥ 60 %) achieved by oil containing 10 wt. % MDG at 3400 rpm for 10 min. Overrun increased progressively with MDG concentration but decreased slightly above 10 wt. % due to the difficulty of dispersing air bubbles in such a viscous gel. Considering the effect of whipping speed, and time, it was observed that mixtures reached their maximum volumes within 25 min. With a further increase in the whipping rate, the time required to achieve the maximum amount of foam was decreased. However, at high whipping speed (5400 rpm), foam volume decreased rapidly with time, and almost a lot of foam collapsed. The lowest and highest pH was related to zero and full-fat commercial sauces, respectively. There was no difference (p>0.05) between the pH of the control and the linoleic acid containing aerated, as well as low-fat sauces. Over time, as the pH decreases, the acidity of the aerated sauces increased and making the products with appropriate microbial stability. Due to the significant reduction of fat amount, oxidation of the aerated sauces was much slower than the full-fat one (p<0.05). Appearance, taste, and texture characteristics of aerated sauces provided a sensory profile similar to the full-fat sauce. The aerated sauce containing linoleic acid had higher sensory scores, indicating its general acceptance. Conclusions: In this study, nonaqueous foam as a new approach for fat replacement in emulsion-based foods such as sauces was practically applied. The optimum aeration process conditions were determined by the help of experimental design. Two types of aerated sauces were prepared based on the linoleic acid concentration, and their physicochemical and sensory characteristics were compared with commercial sauces. The acidity and pH of the sauces were in the standard range, and also their oxidative stability was acceptable during storage time. Generally, the aerated sauce containing linoleic acid had relatively similar sensory profiles to the full-fat sauce. Therefore, it seems that nonaqueous foam could be used successfully to develop reduced-fat alternative foods, which could also be meet the consumers' and marketing requirements.Materials and Methods: Required amounts of mono- and diglyceride (MDG) and oil were mixed. Then nonaqueous foams were obtained by whipping the MDG-oil mixtures. In the optimization study, the effect of MDG concentration (2, 6, and 10 wt. %), whipping speed (1100, 3250, and 5400 rpm) and time (5, 15, and 25 min) on foam properties (overrun and drainage) were analyzed using RSM. The foam obtained from the optimum process condition was used to produce an aerated reduced-fat sauce. Sauce preparation was performed according to a usual recipe with the difference that the fat content was replaced by nonaqueous foam. Furthermore, 3.00 mM of linoleic acid as a fat taste stimulus was added to the formulation. First, an aqueous phase containing ingredients was prepared. Then nonaqueous foam was progressively incorporated in the aqueous phase. For purposes of comparison, aerated sauces (0 and 3.00 mM stimulus), along with commercial sauces (zero and full-fat), were analyzed by measuring the pH, acidity, oxidative stability, and sensory properties. Results and Discussion: According to the results of the optimization study, the desired foam (overrun ≥ 60 %) achieved by oil containing 10 wt. % MDG at 3200 rpm for 10 min. Overrun increased progressively with MDG concentration but decreased slightly above 10 wt. % due to the difficulty of dispersing air bubbles in such a viscous gel. Considering the effect of whipping speed, and time, it was observed that mixtures reached their maximum volumes within 25 min. With a further increase in the whipping rate, the time required to achieve the maximum amount of foam was decreased. However, at high whipping speed (5400 rpm), foam volume decreased rapidly with time, and almost a lot of foam collapsed. The lowest and highest pH was related to zero and full-fat commercial sauces, respectively. There was no difference between the pH of the control and the linoleic acid containing aerated sauces. Over time, as the pH decreases, the acidity of the aerated sauces increased and making them products with appropriate microbial stability. Due to the significant reduction of fat amount, oxidation of the aerated sauces was much slower than the commercial ones. Appearance, taste, and texture characteristics of aerated sauces provided a sensory profile similar to the full-fat sauce. The aerated sauce containing linoleic acid had higher sensory scores, indicating its general acceptance. Conclusions: In this study, nonaqueous foam as a new approach for fat replacement in emulsion-based foods such as sauces was practically applied. The optimum aeration process conditions were determined by the help of experimental design. Two types of aerated sauces were prepared based on the linoleic acid concentration, and their physicochemical and sensory characteristics were compared with commercial sauces. The acidity and pH of the sauces were in the standard range, and also their oxidative stability was acceptable during storage time. Generally, the aerated sauce containing linoleic acid had relatively similar sensory profiles to the full-fat sauce. Therefore, it seems that nonaqueous foam could be used successfully to create reduced-fat alternative foods, which could also be meet consumers' and marketing requirements.
Food Engineering
Saeid Nejatdarabi; Mohebbat Mohebbi
Abstract
In this study the effect of drying conditions on physical and rehydration properties of foam-mat dried mushroom powder was investigated. Physical properties included moisture content, aw, hygroscopicity, particle size, flowability and cohesiveness, angle of repose, and Tg. The results showed physical ...
Read More
In this study the effect of drying conditions on physical and rehydration properties of foam-mat dried mushroom powder was investigated. Physical properties included moisture content, aw, hygroscopicity, particle size, flowability and cohesiveness, angle of repose, and Tg. The results showed physical properties of mushroom powder significantly (p<0.05) affected by dry temperature. The water activity of mushroom powder was below 0.3, which leads to stable conditions. As decreasing drying temperature, the particle size of mushroom powder increased and led to the increase moisture content and aw. The mushroom powder showed better flowability as increased drying temperature. Tg of mushroom powder ranged from 41.3- 55.6°C. An increase in drying temperature led to increasing wettability and dispersibility. The drying condition had no-significant effect (P<0.05) on the solubility of mushroom powder.
Food Technology
Shokohfeh Taziki; Seyed Mohammad Ali Razavi
Abstract
Introduction Wheat starch granules are composed of amylose and amylopectin, which are responsible for the functions of starch such as swelling, gelatinization, pasting, gel formation, and retrogradation. The retrogradation changes the functional properties, it is an undesirable phenomenon in some ...
Read More
Introduction Wheat starch granules are composed of amylose and amylopectin, which are responsible for the functions of starch such as swelling, gelatinization, pasting, gel formation, and retrogradation. The retrogradation changes the functional properties, it is an undesirable phenomenon in some starch-based foods which reduces the acceptability of food, and shortens the shelf life. Delaying or preventing of starch retrogradation is a major challenge in the food industry. Various ingredients such as carbohydrates imply an important role in improving the functional properties, decreasing amylose leaching and retarding the retrogradation of starch gels. Cress seed gum (CSG), as an emerging galactomannan, has shown the ability to improve the textural and rheological features of food systems based on its unique properties. Addition of CSG to the composite wheat-rice bread increased dough stability and improved the staleness of bread compared to guar gum. Also, the addition of CSG and xanthan gum to gluten-free bread stabilized the texture of bread during storage. Sucrose (SUC) is a common additive in food formulations which is useful as a sweetening agent and textural modification. Sugars have been able to reduce amylose leaching and accelerate or delay starch gel formation. They also delay retrogradation of starch gels during storage. Therefore, the objectives of this study were to determine the impact of different substitution levels of CSG (0, 5, 10 and 15%), SUC (0, 5 and 10%), and their blend on the functional properties (swelling strength and solubility), microstructure features, retrogradation kinetics and synthesis of native wheat starch (NWS) gel (4% w/w).Materials and Methods Cress seeds were purchased from a local medicinal market. NWS and SUC were supplied from Sigma Aldrich (Spain) and Merck (Germany) respectively. Starch suspensions (0.6 gr powder/20 ml water) substituted with CSG (0, 5, 10, and 15% w/w) and SUC (0, 5, and 10% w/w) were prepared to estimate the swelling power and solubility index. To produce starch gel, the 4% w/w suspensions of NWS-CSG-SUC were prepared by dissolving the appropriate amount of CSG powder and SUC in deionized water. Then, each suspension was poured into a stainless-steel cylindrical container and was heated to 95 oC and held at 95 oC for 3 min and then cooled to 50 oC while stirring continuously at 160 rpm with a mechanical mixer. Finally, the pastes were kept at ambient temperature (25 oC) for 1 h. To assess gel structure, imaging of the gels was performed by scanning electron microscopy (SEM). The retrogradation kinetics and syneresis of gel samples were determined after storage at 4 oC for 0, 1, 7 and 14 days.Results and Discussions The swelling power and solubility index of NWS increased with increasing the replacement level of CSG. CSG promotes adhesive interactions among the gelatinized granules. This can enhance the forces applied to them, facilitating water entering (increasing swelling), amylose solubilization and its exudation. In contrast, SUC compete with starch molecules for water in the system and thus preventing gelatinization and mobility of starch molecules reduced the swelling power. The starch-gum-sugar mixtures had a higher swelling power compared to the starch and starch-sugar samples. The mixed samples had higher solubility values than each of them individually. SEM images showed that the pore size of starch gel decreased and increased from 33.01 to 29.44 µm and to 45.37 µm with increasing the substitution levels of CSG and SUC, respectively. NWS-15% CSG-5% SUC gel had 31.34 µm pore size. After storage for 14 days at 4 oC, the CSG substitution with NWS reduced the rate of retrogradation and syneresis from 0.101 to 0.52 (s-1) and from 50% to 23%, respectively. It could be related to creating a film around the granules by the leaked amylose and the CSG in the continuous phase, so inhibiting further swelling and polymers leaking out and related to high water holding capacity of CSG. The addition of SUC reduced the rate of the process to 0.096 (s-1) but because of its low water holding capacity, the value of syneresis enhanced to 57%. In the mixed gels, more reduction of the retrogradation rate and syneresis was observed which was clearly at high CSG replacement. The retrogradation rate of the NWS-15%CSG-5%SUC was 0.057 (s-1) and its syneresis was 45%. According to the results, it can be concluded that 15% CSG and 5% SUC replacement levels can effectively improve the functional properties and reduce the rate of retrogradation and syneresis of NWS during storage.
Food Biotechnology
Shohreh Nikkhah; Fakhri Shahidi; Mohebbat Mohebbi; Farideh Tabatabaei Yazdi
Abstract
IntroductionCucumber is an economically important crop, containing vitamins, minerals, antioxidants, and flavonoids. However, due to loss of weight and firmness, microbial contamination, mechanical damage, and yellowing, the storage duration of cucumber is limited to 3–5 days at room temperature. ...
Read More
IntroductionCucumber is an economically important crop, containing vitamins, minerals, antioxidants, and flavonoids. However, due to loss of weight and firmness, microbial contamination, mechanical damage, and yellowing, the storage duration of cucumber is limited to 3–5 days at room temperature. Therefore, pretreatments are crucial for prolonging its shelf life. Chitosan is a cationic polysaccharide and can interact electrostatically with anionic, partially demethylated pectin. Besides, chitosan has inhibitory effects on fungal rot and prevents weight loss in fruits. Pectin can form excellent films. Because of increasing demand to reduce synthetic chemicals as antimicrobial agents, substances derived from plants, such as essential oils, can play a significant role in the future. Several essential oils and essential oil components have shown antimicrobial activity against spoilage and pathogenic microorganisms during fruit and vegetable storage. Essential oils of thyme and cinnamon contained phenolic groups have been found to be most consistently effective against microorganisms, however, essential oils are volatile and irritant. Therefore, forming an inclusion complex using b-cyclodextrin can improve solubility, control volatile, and induce off-flavors and unpleasant odor of the essential oils. The objectives of this study were to develop the microencapsulated thymol (thyme) and trans-cinnamaldehyde (cinnamon) essential oils to produce antimicrobial agents and subsequently evaluate the effectiveness of edible coating made of chitosan and pectin containing microencapsulated trans-cinnamaldehyde or thymol essential oils to improve qualitative and quantitative characteristics and shelf life of cucumber.Materials and MethodsThe inclusion complexes of trans-cinnamaldehyde and thymol in beta-cyclodextrin (CD) were prepared separately by freeze-drying. Each essential oil was dispersed in 1000 ml of beta-cyclodextrin aqueous solution (16 mmol/L, 18.15 g) in molecular ratio 1:1 (2.4 gr thymol, 2.11 gr trans-cinnamaldehyde) and mixed in a laboratory stirrer for 24 hour at room temperature , then frozen (-70 ºc) and freeze-dried (<20Pa, 48 h). Lyophilized samples were stored inside a freezer (-20 ºc) until further use. Cucumbers cv. Nagene with uniform size, appearance, ripeness and without mechanical damage or fungal contamination were selected. Then They were then sanitized by immersion in chlorine solution (150 mg/kg) for 1 min and air dried. Edible coatings were prepared as three immersion solutions of chitosan, pectin, and calcium chloride (CaCl2). The fruits were coated with pectin (1%) and chitosan (0-0.5%-1%) containing beta-cyclodextrin microencapsulated trans-Cinnamaldehyde or thymol each (0-0.25%-0.5%). After coating by chitosan, the fruits were immersed in 1% Calcium chloride solution to induce crosslinking reaction. After dipping step, fruits dried for 8 minutes at room temperature to remove the excess solution attached to the surface .Uncoated fruits served as control. Then fruits were preserved in cold storage (temperature: 10ºc; relative humidity: 90-95%) for 15 days. chemical (total soluble solids, titratable acidity) and physical (total color difference, Hardness, and weight loss) Characterization of fruits were measured immediately after harvest and after 5, 10 and15 days. Microbial tests (total count, mold, and yeast) were done at the end of preservation time. Analytical data were subjected to analysis of variance and factorial adopted completely randomized design and a Duncan comparison test was used. Results and DiscussionThe results showed that weight loss, total soluble solids, and the total color difference increased and hardness and titratable acidity decreased gradually in all samples during cold storage (<0.05). Chitosan and essential oils slowed down this rising or decreasing trends. Interactive effects of chitosan, essential oil type, essential oil concentration, and storage time had positive effects on these quality attributes. The fruits coated with the highest concentration of chitosan (1%) and thymol (0.5%) essential oils showed the least weight loss, loss of hardness, and color change throughout 15 days of storage. Besides thymol in comparison with trans-Cinnamaldehyde was more efficient to prevent yeasts and molds on the surface of cucumber. By increasing chitosan and essential oil amounts, the ability of inhibiting microbial growth by coating is enhanced. ConclusionThe results of chemical, physical and microbial tests, showed that multi-layer coating solution containing chitosan 1% with thymol 0.5% was effective in extending the shelf life of cucumber. The combined usage of microencapsulated thymol essential oil and chitosan-based coating on cucumber could be considered a healthy and effective treatment that reduces microbial spoilage and preserves quality and color characteristics in cucumber and represents an innovative method for commercial application. Therefore, this coating can be used as an alternative to chemical fungicides to prevent fungal rot of cucumber and other fruits, however, it is suggested that more studies should be done in this field.
Food Engineering
Sajad Jafarzadeh; Mohsen Azadbakht; Faryal Varasteh; Mohammad Vahedi Torshizi
Abstract
Since persimmon is a pressure-sensitive fruit and it is difficult to store this fruit in warehouses, in this research, an attempt has been made to examine the parameters affecting the reduction of changes in its physical properties. The samples were loaded at 150 and 250 N, three types of foam container ...
Read More
Since persimmon is a pressure-sensitive fruit and it is difficult to store this fruit in warehouses, in this research, an attempt has been made to examine the parameters affecting the reduction of changes in its physical properties. The samples were loaded at 150 and 250 N, three types of foam container packaging with polyolefin film, polyethylene-terephthalate, and ordinary box, and four types of polyamine putrescine coating with concentrations of 1 and 2 mM, distilled water and uncoated. Properties such as Physiological Weight Loss, volume, and the density of persimmon fruit, as well as the firmness of this fruit in the prepost-storage stage were examined. The results showed, the highest firmness was obtained in the treatment of putrescine at a concentration of 1 mM and a foam container with polyethylene film with a value of 6.5 N, which was almost three times the firmness of uncoated fruits. The lowest Physiological Weight Loss, volume, and density were obtained in the same type of coating and packaging. The values of these parameters were 2.458%, 1.82, and 0.833%, respectively, compared to the first day of storage. Overall, the use of polyamine treatment showed a significant effect on changes in the physical properties of persimmon fruit, and foam containers with polyolefin film emerged as the optimal packaging option, resulting in the least amount of change among the different types of packaging used.
Food Chemistry
Dara Rezakhani; Abdolmajid Mirzaalian Dastjerdi; Somaye Rastegar
Abstract
The sapodilla fruit has a limited shelf life due to its perishability and rapid moisture loss. The application of edible coatings has attracted much interest because they are effective in prolonging the shelf life of fruits. This study aims to evaluate the effectiveness of an edible coating made from ...
Read More
The sapodilla fruit has a limited shelf life due to its perishability and rapid moisture loss. The application of edible coatings has attracted much interest because they are effective in prolonging the shelf life of fruits. This study aims to evaluate the effectiveness of an edible coating made from xanthan gum (XG) (0.1% and 0.2%) combined with oleic acid (Ol) (1%) in prolonging the shelf life of sapodilla fruit at 8 ± 1 οc and a relative humidity (RH) of 85-90%. Weight loss was significantly reduced in the treated fruits, with the minimum weight loss observed in the Xan 0.2% + Ol treatment. Except for the Ol treatment, the other treatments showed a higher level of firmness compared to the control. At the end of the experiment, the treatments significantly reduced fruit respiration. The treated fruits also showed significantly increased antioxidant capacity and higher levels of ascorbic acid compared to the control. The lowest TSS (22.8%) level was noted in the Xan 0.2 + Ol treatment. Moreover, the results showed that fruit treated with Xan 0.1% + Ol coating exhibited higher activity in the superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) enzymes compared to the fruit treated with Xan 0.2 + Ol coating and the control samples. In general, fruits treated with Xan 0.2 + Ol and Xan 0.1% + Ol demonstrated the highest overall quality compared to the control and other treatments. Therefore, the application of these treatments is recommended for maintaining the quality of sapodilla fruit.
Hassan Mirhojati; Parvin Sharayei; Reihaneh Ahmadzadeh Ghavidel
Abstract
The acidified ethanol extracts of dried barberry which have a relatively high anthocyanin content (376.28± 1.45 mg c3g/Kg dmp) were freeze dried using maltodextrin (MDX), polyvinyl-pyrrolidone (PVP) and mixture of MDX and calcium alginate (MDX-CaAlg) as a carrier and coating agents. The qualitative ...
Read More
The acidified ethanol extracts of dried barberry which have a relatively high anthocyanin content (376.28± 1.45 mg c3g/Kg dmp) were freeze dried using maltodextrin (MDX), polyvinyl-pyrrolidone (PVP) and mixture of MDX and calcium alginate (MDX-CaAlg) as a carrier and coating agents. The qualitative attributes of the powders were characterized by their productively encapsulation efficiency, moisture content, bulk density, colour values (L*, a*, b*, C and H° ), particle size, total phenolic compounds (TPC), free radical scavenging activity of DPPH (RSA), ferric reducing-antioxidant power (FRAP) and minimized 50% of radical- scavenging activity (IC50). Scanning electron microscope was used for monitoring the structures of the powders. To determine the stability and half- life period of microencapsulated pigments, samples were stored under different storage temperatures (4◦C and 25◦C) at relative humidity 75%. Results showed that the encapsulated powder containing PVP 8% as wall material represented the best powder quality (p
Makan Delfanian; Mohammad Hossein Hadad Khodaparast; Seyed Mohammad Ali Razavi; Reza Esmaeilzadeh kenari
Abstract
The central composite rotatable design by response surface methodology was applied for optimization of ultrasonic extraction conditions of Bene hull (Pistacia atlantica subsp. Mutica) polyphenols. The sonication time, temperature and ethanol-water ratio were independent parameters studied for the extraction ...
Read More
The central composite rotatable design by response surface methodology was applied for optimization of ultrasonic extraction conditions of Bene hull (Pistacia atlantica subsp. Mutica) polyphenols. The sonication time, temperature and ethanol-water ratio were independent parameters studied for the extraction optimization. Total polyphenols and antioxidant potentials of extracts in terms of ferric reducing antioxidant potential (FRAP), DPPH scavenging activity and oxidative stability index (OSI) were determined. The obtained data were well consistent with the polynomial equations by significant variation in linear, quadratic and interaction impacts of the process factors. The optimized extraction conditions were sonication time, 26.91 min, temperature, 50.42 °C and ethanol concentration, 55.84%. The total polyphenols, DPPH, FRAP an OSI of optimal extract were 304.47 mg GAE/g, 72.47%, 54.04 mmol/100g and 8.55 h, respectively. High performance liquid chromatography (HPLC) analysis of optimal extract detected presence of epicatechin, chlorogenic, sinapic, caffeic and gallic acids.
Parastoo Pourashouri; Bahareh Shabanpour; Zeinab Noori Hashemabad
Abstract
Caviars represent the best-known form of fish roe products. The conventional method of roe processing includes saturated brine salting. However, despite the importance of these products, there is relatively little technical information available about their chemical composition, product quality and food ...
Read More
Caviars represent the best-known form of fish roe products. The conventional method of roe processing includes saturated brine salting. However, despite the importance of these products, there is relatively little technical information available about their chemical composition, product quality and food safety attributes.Three experimental treatments were provided with kutum roe brined in 10, 18 and 24% sodium chloride solutions for 14 days (24°C). Then, the brined-roes were removed from the solution and stored at 4°C for 90 days in refrigerator. The contents of proximate compositions, salt, volatile base nitrogen (VBN), total psychrotrophic bacteria and histamine forming bacteria, color were measured. Sampling was carried out at the first and at the end of days 30, 60 and 90 of storage period.The samples brined in 10% solution putrefied during the brining and removed from study. The moisture and total volatile nitrogen content of 24% brined roes were lower than 18% treatment. The pH and histamine forming bacteria number at the end of storage and total psychrotrophic bacteria number after 60 days of storage were higher. The increase of L* value and the decrease of a* value in samples of brine 18% were observed on days 60 and 90 of storage, but this increase was induced only on the day 90 for samples of brine 24%. 18%brined roe showed acceptable chemical and microbial results in refrigerated condition, and 24% brine roe appeared optimal during storage period.
Mahdi Hosseini Bahri; Reza Esmaeilzadeh kenari
Abstract
In this study, the effects of bath and probe ultrasound treatments were investigated on yield, texture (hardness, adhesion, cohesion, springiness and chewiness), pH and moisture content of fresh white cheese. The times 2, 4, 6 minutes and 5, 10, 15 minutes were used in probe treatment (frequency 20 kHz) ...
Read More
In this study, the effects of bath and probe ultrasound treatments were investigated on yield, texture (hardness, adhesion, cohesion, springiness and chewiness), pH and moisture content of fresh white cheese. The times 2, 4, 6 minutes and 5, 10, 15 minutes were used in probe treatment (frequency 20 kHz) and bath treatment (frequency 37 kHz), respectively, at temperatures of 40, 50 and 60°C in two stages (raw cow milk and cheese matrix). The results showed that applying ultrasound treatment significantly (P
Reza Farahmandfar; Maryam Asnaashari; Milad Amraie; Mohammad Salehi
Abstract
The consumer’s acceptance significantly reduces during the storage of fresh cut fruits. Edible coating is one of the most innovative ways to maintain quality and improve shelf life of fresh fruits and vegetables. The objective of this study was to assess the suitability of quince seed gum (QSG) ...
Read More
The consumer’s acceptance significantly reduces during the storage of fresh cut fruits. Edible coating is one of the most innovative ways to maintain quality and improve shelf life of fresh fruits and vegetables. The objective of this study was to assess the suitability of quince seed gum (QSG) at different concentrations (0.5, 1 and 1.5%) as edible coatings for banana slices and to determine their influence on changes in physicochemical properties during storage at 4 °C and 40 °C. Data on shrinkage, weight loss and color were collected and subjected to statistical analysis. Banana slices which coated with 1 % of QSG and stored at 4 °C showed significantly better physicochemical characteristics. Higher temperatures result in more rapid changes of quality parameters. On the other hand, samples coated with gum reduced the weight loss and shrinkage during storage. It is recommended that 1% quince seed gum can be used to reduce the surface fresh-cut banana browning.
Maryam Azizkhani; Fatemeh Adinehpour
Abstract
In order to inhibit the oxidation of lipids, improve the oxidative stability of foods and to minimize the hazard risk to human health, antioxidants are added to food materials in industrial processing. In this work, the antioxidant potential of cinnamon (Cinnamomum zeylanicum), ajowan (Carum copticum) ...
Read More
In order to inhibit the oxidation of lipids, improve the oxidative stability of foods and to minimize the hazard risk to human health, antioxidants are added to food materials in industrial processing. In this work, the antioxidant potential of cinnamon (Cinnamomum zeylanicum), ajowan (Carum copticum) and zataria (Zataria multiflora Boiss.) essential oils (EOs) at different concentrations (0, 1 and 1.5%) on free fatty acid content (FFA), peroxide value (PV) and thiobarbituric acid reactive substances (TBARS) of grape seed oil stored at 60ºC was evaluated. Ajowan treated samples (1.5%) showed the lowest (1.02%) and zataria treated samples (1%) expressed the highest (1.19%) FFA value among EO-treated samples. Samples treated with 1.5% cinnamon showed the lowest PV (69.5 meq O2/ kg) at the end of the storage period. Following control, the highest PV was seen in samples treated with zataria (1%). Grape seed oil samples treated with 1 and 1.5% cinnamon showed the lowest TBARS values during the whole storage period (one month). TBARS of zataria treated samples increased slightly toward the end of storage and a similar trend in TBARS was observed for samples treated with ajowan. The antioxidant activity of EOs in grape seed oil followed in descending order was cinnamon, ajowan, and zataria.
Farhad Fatehi; Hadi Samimi Akhijahani
Abstract
Nowadays, in modern agriculture, the combination of image processing techniques and intelligent methods has been used to replace smart machine instead of humans. In this study, an artificial image processing and artificial neural network (ANN) method was used to classify strawberry fruit of Parus variety. ...
Read More
Nowadays, in modern agriculture, the combination of image processing techniques and intelligent methods has been used to replace smart machine instead of humans. In this study, an artificial image processing and artificial neural network (ANN) method was used to classify strawberry fruit of Parus variety. In the first step, the fruit was divided into 6 classes (ANN outputs) by the expert, and 100 samples were randomly collected from each class. In the next step, the images of the samples were captured and three geometric properties with twelve color properties (as ANN inputs) were extracted. Optimum artificial neural network structures considering root mean squared error (RMSE) and correlation coefficient (R2) were investigated to classification process of the strawberry samples. Finally, the perceptron neural network with a structure of 6-18-15 was selected with an average accuracy of 83.83%.
Food Chemistry
Hassan Rezadoost; Maryam Manzari Tavakoli; Samad Nejad Ebrahimi; Mohammad Reza Vazifeshenas; Mohammad Hossein Mirjalili
Abstract
Over the past decades, the use of natural additives has increased as an alternative to artificial ingredients in the food industry. The purpose of this study was to investigate the potential of pomegranate peel (PP) as a natural food additive. Many factors, including genotype, could affect the quality ...
Read More
Over the past decades, the use of natural additives has increased as an alternative to artificial ingredients in the food industry. The purpose of this study was to investigate the potential of pomegranate peel (PP) as a natural food additive. Many factors, including genotype, could affect the quality of PP as a by-product of juice production with many nutritional, functional and anti-infective properties. In this study, the most significant phytochemical characters of thirty Iranian pomegranate peels (IPP) from different genotypes, including total phenolic (TPC) and flavonoid content (TFC), and nine phenolic compounds were determined. The HPLC-DAD-MS results of PPEs revealed nine phenolic compounds in the IPP extracts. Punicalagin β, punicalagin α, and ellagic acid were the main components constituting 20.8–48.7, 13.9–30.1, and 1.6–13.4 μg/mg DW, respectively. The peel of IPP23 (Kabdar-Shirin-e- Behshahr) contained the highest quantity of polyphenolic compounds. Also, TPC and TFC of the peel extracts ranged between 66.38 and 181.41 mg GAE/ g DW and 38.5 to 144.13 mg RE/ g DW, respectively. Eventually, antioxidant potential estimated by the DPPH assay ranged between 4.1 and 14.4 μg/ml. The results showed that the antioxidant property of pomegranate peel extracts is significantly higher than the standard of gallic acid. Also, the peel of the genotypes that had high phenolic compounds were introduced as superior genotypes. The results of HCA showed that, among the studied genotypes, the peel of IPP23 can be introduced as a potential source of natural preservatives in the food industry.
Food Technology
Kimia Goharpour; Fakhreddin Salehi; Amir Daraei Garmakhany
Abstract
Falafel is considered as an inexpensive and nutritious product that contains various plant substances, vitamins, dietary fibers, and phenolic compounds. The aim of this research was to investigate the impact of sprouting time on the physicochemical characteristics of sprouted chickpea flour. Also, the ...
Read More
Falafel is considered as an inexpensive and nutritious product that contains various plant substances, vitamins, dietary fibers, and phenolic compounds. The aim of this research was to investigate the impact of sprouting time on the physicochemical characteristics of sprouted chickpea flour. Also, the effects of sprouting time on the physicochemical characteristics and sensory properties of falafel prepared from sprouted chickpea flour were examined. The finding of this research indicated that the sprouting process significantly increased the total phenolic content (from 284.17 to 720.98 μg gallic acid/g dry), antioxidant capacity (from 77.55% to 93.35%), and redness (from 7.65 to 11.39) of chickpea flour (p<0.05). While, it significantly decreased the lightness (from 70.81 to 57.07) and yellowness (from 43.71 to 25.62) of chickpea flour (p<0.05). The total phenolic content and antioxidant capacity of falafel prepared from flour of sprouted chickpea for two-days (48 hours) were significantly higher than those prepared from unsprouted chickpeas flour (p<0.05). The volume of falafel samples produced from unsprouted, one-day sprouted, and two-day sprouted chickpea flours was 18.75, 16.60, and 15.40 cm3, respectively. The minimum oil uptake was observed in the sample prepared from chickpeas sprouted for two-days (p<0.05). The sprouting process did not have a significant impact on the firmness, cohesiveness, and chewiness of the falafel (p>0.05). In general, utilizing of one-day (24 hours) sprouted chickpea flour for the production of falafel is recommended due to the best flavor, the highest overall acceptance score, high content of phenolic compounds, high antioxidant capacity, and low oil absorption.
Shima Nasiri; Saman Abdanan; Maryam Nadafzadeh
Abstract
Introduction: The development of brown spots on banana peel has a notable effect on the texture, color and taste of this fruit. So that the appearance of these spots reduces the quality of the fruit and affect its sale market. In recent years, in order to evaluate the quality and classification of agricultural ...
Read More
Introduction: The development of brown spots on banana peel has a notable effect on the texture, color and taste of this fruit. So that the appearance of these spots reduces the quality of the fruit and affect its sale market. In recent years, in order to evaluate the quality and classification of agricultural products, the various systems based on computer vision technology have been widely considered. These systems as the computer image analysis methods have been successful in measuring the visual quality of different products (Riyadi et al., 2007; Roseleena et al., 2011; Rodriguez-pulido et al. 2012). According to research by Probha and Kumar (2015), the extracted color properties from the banana image were more effective than other features in identifying the different stages of the banana ripening. Also, Mendoza and Aguilera (2004) detected the different stages of banana ripening based on the color, texture parameters and the distribution of brown spots on banana peel using image processing technique with a precision of 98%. Nadafzadeh et al. (2018) designed a non-linear mathematical model using the Genetic Programming (GP) to predicting and evaluating the activity of polyphenol oxidase enzymes (PPO) and peroxides (POD) during the browning process of the banana peel; using the extracted parameters from image as inputs of proposed model, the correlation coefficients to predicting of PPO and POD enzymes were obtained 0.98 and 0.97, respectively.The aim of this study was to investigate the changes of color, dimensions and chemical parameters of several banana fruit groups (different in terms of appearance) as well as their marketability (the total acceptance of fruit) by Gaussian regression model (GPR) during the storage period. Therefore, using the proposed method in this research, the required product can be available according to the consumer demand. Materials and Methods: In this study, one hundred banana samples were prepared from a market on the first day of the experiments. Samples were different in terms of shape and size, and were classified into 5 different groups. Group A had small size and curvature; B group compared to Group A had more curvature; the curvature of the samples in the group C was high, and in terms of size were medium. While the size of the bananas in group D was large, they had a small curvature. Also, the features of the group E were similar to the group D, but the curvature was greater in this group (group E). All of the samples were kept at the ambient temperature (25° C) away from the direct light for 7 days. During the days of experiments (days 0, 2, 4 and 6), five samples were examined from each group: after taking images of samples under the constant light conditions, and performing of manual measurements, they were subjected to destructive tests (laboratory tests) and sensory tests. After the images acquisition of samples, the preprocessing operations such as image enhancement, noise removal by the area opening, and the implementation of the image segmentation process using the method of Otsu adaptive thresholding were conducted (Gonzalez et al., 2004). Finally, 11 color parameters (R, G, B, L, a, b, h, s, v, C, H) and 4 dimensional characteristics (diameter, curvature radius, long and small length) were extracted from each image. In the laboratory method, the TSS value was measured by a digital refractometer, and amount of pH and acidity were also measured by a fruit juice analysis titrator. Eventually, in order to investigate the changes of measured parameters, statistical analysis was performed in a randomized complete block design by SAS 9.3 software at a significance level of 5% using Duncan's multiple comparison test. Results and discussion: Gradually along with the appearance of dark spots on the banana peel, many of the qualitative parameters such as the color, dimensions and chemical features were changed during the storage period. According to results of the Duncan's multiple range test, the values of color coordinates R, G, B, L, b, h, v, C, and H gradually reduced, and the values of these parameters were significant in all the experiments days (p<0.05). The parameter S also had a decreasing trend during the storage period, and the changes of this parameter was significant in the first days of the experiments compared to the ending days; during this period, the color parameter a increased significantly. Due to the changes of the banana fruit texture, the amount of the curvature radius, the small and large lengths, total soluble solids, pH and total titration acidity gradually decreased. Based on the results of the statistical analysis, there were no significant differences between dimensional parameters measured by non-destructive method and manual measurement (p>0.05). It is worth noting that in this study, the spent time to conduct the manual measurements of the dimensional parameters of a banana sample was 510 seconds, while all of these measurements were performed using a digital image processing method at 1.015 seconds. Therefore, it can be said that when the number of samples is high, using of the proposed method is also very cost-effective in terms of time, and it has high accuracy during the measurement. In the sensory evaluation, the results show that the best and most acceptable group of bananas were groups C, D and E, which had long size and low curvature; these groups of bananas had delicious texture, desirable flavor and low levels of brown spots on their peel. In the following, the non-destructive parameters were used to the development of Gaussian regression model (GPR), and finally, it was shown that the quality of banana fruit as well as its marketability (the total acceptance of fruit) are predictable during the storage period by GPR with a correlation coefficient of 0.91, MAPE (20.47), RMSE (0.43), SRE (0.71) and RAV (0.20).The appearance quality of the banana fruit is very effective in its acceptability for customer. In this research, the image processing technique as a non-destructive method was used to extract a set of color (R, G, B, L, a, b, h, s, v, C and H) and morphological properties (diameter, curvature radius, long length and small length) from banana image in order to evaluate its quality during storage. According to the results of Duncan's statistical analysis at the probability level of 5% and Pearson correlation results, the most suitable parameters were chosen to apply in Gaussian regression model. The results showed that the image processing technique is capable to evaluating the changes of color and dimensional parameters of banana fruit, and also the proposed model have a satisfactory performance (R2=0.91) in predicting the overall acceptance parameter of the banana.