Document Type : Research Article

Authors

1 Mashhad University of Medical Sciences

2 Department of Food Science and Technology, Ferdowsi University of Mashhad, Mashhad, Iran.

3 University of Tehran

Abstract

Analysis of food surfaces is of interest because many processes depend on their complexity. Food surfaces show several textural characteristics related to their nature, composition and processing. Food surface images and their microscopic details need to be translated into numerical data before engineering analysis. Fractal geometry is a novel concept to describe the complexity of natural shapes. In order to introduce a nondestructive method estimating the effect of process conditions on ostrich meat plates’ surface, in this research an image analysis technique was applied and the concept of fractal dimension was used to quantity the changes. Results show that fractal dimensions of the surfaces decreased with frying. Furthermore, with the increase in frying temperature, frying time and power of microwave pretreatment, a growing procedure in fractal dimension was observed. Fractal dimension as a quantity index could describe the shrinkage of deep-fried ostrich meat as a physical property.

Keywords

امیریوسفی، م. ر.، 1389، بررسی کینتیک انتقال جرم، خصوصیات فیزیکوشیمیایی و بعد برخالی فیله گوشت شترمرغ سرخ شده به روش عمیق با استفاده از شبکه‌های عصبی مصنوعی، پایان‌نامه دوره کارشناسی ارشد، دانشگاه تهران.
فتحی، م.، 1388، بررسی کینتیک، خصوصیات فیزیکوشیمیایی و بعد برخالی کیوی خشک شده به روش ترکیبی اسمزی هوای داغ با استفاده از شبکه‌های عصبی مصنوعی، پایان‌نامه دوره کارشناسی‌ارشد، دانشگاه فردوسی مشهد.
رضوی، س. م. ع. و اکبری، ر. 1385، خواص بیوفیزیکی محصولات کشاورزی و مواد غذایی، چاپ اول انتشارات دانشگاه فردوسی مشهد، مشهد.
Abbasi, S., Mousavi, S. M. and Mohebbi, M., 2011, investigation of changes in physical properties and microstructure and mathematical modeling of shrinkage of onion during hot air drying. Iranian Food Science and Technology Research Journal, 7 (1), 92- 98.
Balog, A. and Almeida Paz, I. C. L., 2007, Ostrich (Struthio camellus) carcass yield and meat quality parameters. Brazilian Journal of Poultry Science, 9(4), 215 – 220.
Castillo, O. and Melin, P., 1999, Intelligent quality control for manufacturing in food industry using a new fuzzy-fractal approach, IEEE, Transactions on Pattern Analysis and Machine Intelligence, 1, 151-156.
Clemente, G., Bon, J., Sanjuan, N. and Mulet, A., 2009, Determination of Shrinkage Function for Pork Meat Drying. Drying Technology, 27(1), 143-148.
Devahastin, S., Suvarnakuta, P., Soponronnarit, S. and Mujumdar, A. S., 2004, A comparative study of lowpressure superheated steam and vacuum drying of a heat-sensitive material. Drying Technology, 22, 1845–1867.
Fernandez-Lopez, J., Jimenez, S., Sayas-Barbera, E., Sendra, E. and Perez-Alvarez, J. A., 2006, Quality characteristics of ostrich (Struthio camelus) burgers. Meat Science, 73(2), 295-303.
Hubbard, L. J. and Farkas, B. E., 2000, Influence of oil temperature on heat transfer during immersion frying. Journal of Food Processing and Preservation, 24, 143-162.
Hubbard, L. J. and Farkas, B. E., 2000, Influence of oil temperature on heat transfer during immersion frying. Journal of Food Processing and Preservation, 24, 143-162.
Karperian, A., 2005, FracLac for ImageJ, FracLac Advanced User’s Manual, Charles Sturt University, Australia, 1-36.
Kerdpiboon, S. and Devahastin, S., 2007, Fractal characterization of some physical properties of a food product under various drying conditions. Drying Technology, 25(1), 135-146.
Kvaal, K., Wold, J. P., Indahl, U. G., Baardseth, P. and Naes, T., 1998, Multivariate feature extraction from textural images of bread. Chemometrics Intelligent Laboratory Systems, 42(1–2), 141–158.
Maskan, M., 2001. Drying, shrinkage and rehydration characteristics of kiwifruits during hot- air and microwave drying. Journal of Food Engineering, 48, 177-182.
Mendoza, F., Valous, N. A., Allen, P., Kenny, T. A., Ward, P. and Sun, D.-W., 2009, Analysis and classification of commercial ham slice images using directional fractal dimension features. Meat Science, 81(2), 313-320.
Mohebbi, M., Akbarzadeh-T, M. -R., Shahidi, F., Moussavi, M. and Ghoddusi, H. -B., 2009, Computer vision systems (CVS) for moisture content estimation in dehydrated shrimp. Computers and Electronics in Agriculture. 69, 128-134.
Ngadi, M., Dirani, k. and Oluka, S., 2006, Mass transfer characteristics of chicken nuggets. International Journal of Food Engineering, 2(3), 1-16.
Ngadi, M. O., Wang, Y., Adedeji, A. A. and Raghavan, G. S. V., 2009, Effect of microwave pretreatment on mass transfer during deep-fat frying of chicken nugget. LWT- Food Science and Technology, 42, 438-440.
Quevedo, R., Carlos, L. -G., Aguilera, J. M. and Cadoche, L., 2002, Description of food surfaces and microstructural changes using fractal image texture analysis. Journal of Food Engineering, 53(4), 361-371.
Santacruz-Vazquez, C., Santacruz-Vazquez, V., Chanona-Perez, J., Jaramillo-Flores, M. E., Welti-Chanes, J. and Gutierrez-Lopez, G., 2007, Fractal Theory Applied to Food Science. Encyclopedia of Agricultural. Food and Biological Engineering, 1-13.
Singh, N., Akins, R. G. and Erickson, L. E., 1984, Modeling heat and mass transfer during the oven roasting of meat. Journal of Food Process Engineering, 7(3), 205-220.
Ziaiifar, A. M., Achir, N., Courtois, F., Trezzani, I. and Trystram, G., 2008, Review of mechanisms, conditions, and factors involved in the oil uptake phenomenon during the deep-fat frying process. International Journal of Food Science & Technology, 43(8), 1410-1423.
Zielinska, M. and Markowski, M., 2007, Drying behavior of carrots dried in a spout-fluidized bed dryer. Drying Technology, 25(1), 261 - 270.
CAPTCHA Image