Document Type : Research Article

Authors

1 Tarbiat Modares University

2 Gorgan Agricultural Sciences and Natural Resources-Faculty of Fisheries and Environment-Aquatic Processing Department

3 Faculty member of Iranian Fisheries Science Research Institute

4 Gorgan University of Agricultural Sciences and Natural Resources

Abstract

The objective of this study was to produce fish peptone from tuna (Thunnus tonggol) viscera, by Alcalase. Response Surface Methodology (RSM) was employed for optimizing the temperature and pH. Hydrolysis was done in different tempratures (50-65˚C) , pH (8-8. 5) and selected 13 treatments. Samples with higher value of protein were used instead of the standard peptones which applied in commercial media for Listeria monocytogenes. Based on the three-dimensional graphs, the optimum condition for temperature and pH were determined to be 50˚C and 8. 5 respectively. The results showed that the highest (76. 89 g/l) and the lowest (38. 54 g/l) rates of protein content were related to pH 8 at 57˚C and pH 8 at 50˚C. Maximum bacterial growth rate was related to pH 8 at 65˚C. Results also showed that tuna (Thunnus tonggol) viscera can be used as low cost nitrogen sources for Listeria monocytogenes growth media.

Keywords

اویسی پور، م. ر. و قمی م. ر. 1387. بیوتکنولوژی در تولید فرآورده‌‌های دریایی. انتشارات دانشگاه آزاد اسلامی واحد تنکابن. 66-68.
سالنامه آماری سازمان شیلات ایران 1386.
تقی اف، م. ، قمی، م. ر. و اویسی پور،م. ر. 1389. تولید پروتئین هیدرولیز شده از امعاء و احشاء فیل ماهی (Huso huso) با استفاده از آنزیم آلکالاز. مجله شیلات ایران4 (1) ، 35-40.
Aspmo SI, Horn SJ, and Eijsink VGH. 2005a. Use of hydrolysates from Atlantic cod (Gadus morhua L.) viscera as a complex nitrogen source for lactic acid bacteria. FEMS Microb Lett 248: 65–68.
Aspmo SI, Horn SJ, Eijsink VGH. 2005b. Hydrolysates from Atlantic cod (Gadus morhua L.) viscera as components of microbial growth media. Process Biochem 40: 3714–22.
Aspmo SI, Horn SJ, Eijsink VGH. 2005c. Enzymatic hydrolysis of Atlantic cod (Gadus morhua L.) viscera. Process Biochem 40, 1957–1966.
Bhaskar, N. , Benila, T. , Radha, C. , and Lalitha, R. G. 2008. Optimization of enzymatic hydrolysis of visceral waste proteins of Catla (Catla catla) for preparing protein hydrolysate using a commercial protease. Bioresource Technology, 99, 335-343.
Diniz, F. M. , and Martin, A. M. 1996. Use of response surface methodology to describe the combined effects of pH, temperature and E/S ratio on the hydrolysis of dogfish (Squalus acanthias). International Journal of Food Science and Technology, 31, 419–426.
Dufossee, L. , de la Broise, D. , and Guerard, F. 2001. Evaluation of nitrogenous substrates such as peptones from fish: a new method based on Gompertz modeling of microbial growth. Current Microbiololgy, 42, 32–38.
FAO 2006. Year book of fishery statistics (Vol. 98/1and2). Rome: Food and Agricultural Organisation of the United Nations.
Gildberg A, Batista I, Strøm E. 1989. Preparation and characterization of peptones obtained by a two-step enzymatic hydrolysis of whole fish. Biotechnol Appl Biochem 11, 413– 423.
Guerard, F. , Dufosse, L. , De La Broise, D. , and Binet, A. 2001. Enzymatic hydrolysis of proteins from yellowfin tuna (Thunnus albacares) wastes using Alcalase. Journal of Molecular Catalysis. B, Enzymatic, 11, 1051– 1059.
Hoyle, N. T. , and Merritt, J. H. 1994. Quality of fish protein hydrolysate from Herring (Clupea harengus). Journal of Food Science, 59, 76–79 and 129.
Kristinsson, H. G. , and Rasco, B. A. 2000a. Fish protein hydrolysates: production, biochemical, and functional properties. Critical Reviews in Food Science and Nutrition, 40 (1) , 43–81.
Kristinsson, H. G. , and Rasco, B. A. 2000b. Biochemical and functional properties of Atlantic salmon (Salmo salar) muscle proteins hydrolyzed with various alkaline proteases. Journal of Agricultural and Food Chemistry, 48, 657–666.
Larsen, T. , Thilsted, S. H. , Kongsback, K. , and Hanse, M. 2000. Whole small fish as a rich calcium source. British Journal of Nutrition, 83, 191– 196.
Laufenberg, G. , Kunz, B. , and Nystroem, M. 2003. Transformation of vegetable waste into value added products. Bioresource Technology, 87, 167–198.
Layne, E. 1957. Spectrophotometric and turbidimetric methods for measuring proteins. Methods in ensymology, vol. 3 (p. 450). NewYork: Academic.
Martone, C. B. , Borla, O. P. , and Sanchez, J. J. 2005. Fishery by - product as a nutrient source for bacteria and archaea growth media. Bioresource Technol0gy, 96, 383-387.
Miettinen, H. , Aarnisalo, K. , Salo, S. and Sjöberg, A. -M. 2001. Evaluation of surface contamination and the presence of Listeria monocytogenes in fish processing factories. J. Food Prot. 64, 635-639.
Montgomery D. C. 2001. Design and analysis of experiments (5th Ed.) New York, USA.
Nilsang, S. , Lertsiri, S. , Suphantharika, M. , and Assavanig, A. 2005. Optimization of enzymatic hydrolysis of fish soluble concentrate by commercial proteases. Journal of Food Engineering, 70, 571–578.
Ovissipour, MR. , Abedian, A. M. , Motamedzadegan, A. , Rasco, B. , Safari, R. , and Shahiri, H. 2009a. The effect of enzymatic hydrolysis time and temperature on the properties of protein hydrolysates from the Persian sturgeon (Acipenser persicus) viscera. Food Chemistry, 115, 238–242.
Ovissipour, MR. , Safari, R. , Motamedzadegan, A. , Shabanpour, B. 2009b. Chemical and Biochemical Hydrolysis of Persian Sturgeon (Acipenser persicus) Visceral Protein. Food Bioprocess Technol, DOI 10. 1007/s11947-009-0284-x.
Ovissipour, MR. , Safari, R. , Motamedzadegan, A. , Rasco, B. ,Pourgholam, R. , Mohagheghi, E. , Esmaeili Molla, A. 2009c. Use of hydrolysates from yellofin tuna (Thunnus albacares) fisheries by-product as nitrogen source for bacteria growth media. Int Aquat Res 1,73-77.
Parajo J. C. Alonso J. L. Lage M. A. and Vazquez D. 1992. Empirical modeling of Eucalyptus wood processing, Bioprocess Engineering, 8, 129–136.
Perea, A. , Ugalde, U. , Rodriguez, I. , and Serra, J. L. 1993. Preparation and characterization of whey protein hydrolysates: application in industrial whey bioconversion processes. Enzyme and Microbial Technology, 15, 418–423.
Rocourt, J. , Hogue, A. , Toyofuku, H. , Jacquet, C. and Schlundt, J. 2001. Listeria and listeriosis: risk assessment as a new tool to unravel a multifaceted problem. Am. J. Infect. Control 29, 225-227.
Safari, R. , Motamedzadegan, A. , Ovissipour, M. , Regenstein, J. M. , Gildberg, A. , and Rasco, B. 2009. Use of hydrolysates from yellowfin tuna (Thunnus albacares) heads as a complex nitrogen source for lactic acid bacteria. Food and Bioprocess Technology, doi:10. 1107/s11947-009-0225-8.
Safari, R. ,Nasrollahzadeh Saravi, H. ,Pourgholam, R. , Motalebi, A. , Ghoroghi, A. 2011. Use of Hydrolysates from Silver Carp (Hypophthalmichthys molitrix) Head as Peptone for Vibrio anguillarum and Optimization Using Response Surface Method (RSM). Journal of Aquatic Food Product Technology, 20,1-11.
Skanderby, M. 1994. Protein hydrolysates: their functionality and applications, Food Technol.. int. Eur. , 10, 141.
Varnam, A. H. 1991. Foodborn pathogens. Wolf Publishing Ltd, England, Pp327-353.
Vazquez, J. A. , Gonzalez, M. P. , and Murado, M. A. 2004. A new marine medium—use of different fish peptones and comparative study of the growth of selected species of marine bacteria. Enzyme and Microbial Technology, 35, 385–92.
Vazquez JA, and Murado MA. 2008a. Enzymatic hydrolysates from food wastewater as a source of peptones for lactic acid bacteria productions. Enzyme Microbial Technol 43, 66–72.
Vazquez JA, Docasal SF, Prieto MA, Gonzalez MP, and Murado MA. 2008b. Growth and metabolic features of lactic acid bacteria in media with hydrolysed fish viscera. An approach to bio-silage of fishing by-products. Bioresour Technol 99, 6246–6257.
CAPTCHA Image