Document Type : Research Article

Authors

1 Islamic Azad University of Shahrekord

2 Islamic Azad University, Shahrekord Branch

3 Zanjan University

4 Tehran Energy and Material Research

Abstract

Introduction : One of the most important problems of synthetic packaging of materials had been the time consuming process of their decomposition. Therefore, they have the potential to contaminate the environment. During the recent years, the above-mentioned problem has paved the way for developing biodegradable biopolymers. One group of these polymers is films and edible coatings. Soy protein isolate is the purest type of soy protein which is available commercially and amount of its protein is more than 90% (based dry weight). These films have better nutritional value. In addition, they have better mechanical features and permeability than films made of carbohydrates and fats. Tragacanth gum is composed of two main ingredients under the name of Tragacantic acid or Basorin and Tragacantin. Basorin is in 60-70% of whole gum and is insoluble in the water. It can swell and make gel. Also, another ingredient or Tragacantin solves in the water and leads to make colloid solution. Hence, the main purpose of this work is studying effect of tragacanth gum as a supplementary and firmness-making material on physical and mechanical features of soy protein isolate film and are determining the best level of tragacanth gum and optimal film for using in food packaging.

Materials and methods: A specified amount of soy protein isolate was solved in distilled water. Then, pH of solution was set on 10 by NaoH (0.1N). Solution of soy protein isolate was heated by bain-marie to 70˚c. Afterwards, solution of tragacanth gum with suitable amount of treatment which was solved separately in the water was added to solution of soy protein isolate slowly during agitating by magnetic mixer. Then, glycerol was added to the final solution as plasticizer. Final solution was agitated by magnetic mixer about 15 minutes to become smooth and pure. After degassing, the film forming solutions were casted by pouring the mixture onto polystyrene plate (10 cm diameter) and dried at 25±5˚c for 48 h in a laboratory oven and room relative humidity. Finally, the dried films were peeled off the casting surface. Film solutions were prepared from soy protein isolate with ratio of 0.5:4.5(A), 0.3:4.7(B) and 0.1:4.9(C), tragacanth gum: soy protein isolate and plasticizer of glycerol were prepared in 100gr water with ratio of 90% (w/w) dry weight. According to plasticizer effect of water, to uniform moisture before performing each test, all the films were conditioned inside desiccators containing saturated magnesium- nitrate solution to ensure a relative humidity 0f 50-55% at 25˚c ± 1 for 48 h.
Tensile strength (TS) and elongation at break (EB) were conducted by using tensile evaluation machine (7010, Gotec of Taiwan) according to ASTM standard method D882-10 (ASTM, 2010).
Films were cut in the dimension of 2×2 cm2 and dried to reach constant weight at 100 ˚C in a laboratory oven. Dried samples weighed to determine the initial dry weight (m1) and placed inside beaker including 50 ml of distilled water with periodic stirring for 24 h at 25˚C. Afterwards, the remained pieces of films were taken out and dried at 100˚C to reach constant weight (m2).
After the films reached in moisture balance at 25˚C and a proportional humidity at %55. Their moisture was determined by measuring the loss amount of film weight during drying in a laboratory oven at 105˚c unti constant weight.
The specimens of films was provided at 2×2cm2 dimensions and prepared by dried calcium chloride until reached to constant weight (m1). After the initial weight, they were conditioned in a desiccator containing saturated magnesium nitrate solution at 25˚c to provide reaching a relative humidity of %50-55. Then, the specimens were weighed in regular intervals until the equilibrium state was reached (m2).
Water vapor permeability tests of films were performed according to ASTM- E95-96 standard (ASTM, 1995).The color of films was evaluated using a colorimeter device (LabscanXE, Hunterlab, USA).
Statistical analysis was conducted in a completely randomized design with variance analysis (ANOVA) using SPSS software (Version 21; SPSS Inc., USA). Also, comparing the difference among mean values of film specimens was performed using Duncan,s multiple range tests at the confidence level of 95%.

Results and Discussion:The obtained results indicated that tensile test (TS) of film was increased by increasing tragacanth gum and decreasing soy protein isolate but elongation to break (ETB) decreased. This result was agreed with the results of Fazel et al (2013), Tian et al (2011), Chen and Lai (2008). The amount of film moisture increased by increasing tragacanth gum, while amount of solubility in water, water absorption decreased by increasing tragacanth gum. The highest of wvp was observed in SPI:TG (4.9:0.1) but the lowest value was related to the sample SPI:TG (4.7:0.3). In general, the amount of wvp decreased by increasing tragacanth gum. The free space between chains decreases by forming transversal connections between protein filaments. Also, filaments mobility decreases, while penetration and spread of vapor molecules from polymer will decrease and its prevention becomes more in the water. The highest L, a, and whiteness index was observed in SPI:TG (4.5:0.5). In contrary, the highest b, total color difference (ΔE), and yellowness index was observed in SPI:TG (4.9:0.1). Optical properties of films used in food packaging are very important for their effects on acceptance and food quality. Results of Sarmadizadeh et al. (2014) showed that increasing protein has changed films color. Therefore, adding tragacanth gum caused to improve the structure and to improve physicochemical properties of the samples. It could be concluded biodegradable film of SPI+TG has desirable characteristics for the application in food packaging.

Keywords

خدایاری،م.، 1389، بسته بندی های خوراکی برای موادغذایی. ماهنامه فناوری نانو،10(9):پیاپی 159.
رواقی، م.، مظاهری تهرانی، م. و آسوده، ا.، 1392، اثر میزان چربی آرد سویا بر ویژگی های شیمیایی وعملکردی ایزوله پروتئینی آن. نشریه پژوهش های صنایع غذایی، 33(1): 59-67.
سرمدی زاده، د.،. بدیعی، ف.، مفتون آزاد، ن.، احسانی، م. ر. وعامری شهرابی، آ.، 1392، بررسی اثر گلیسرول و سوربیتول بر ویژگی های فیلم های خوراکی ایزوله پروتئین سویا به روش سطح پاسخ. فصلنامه علوم و صنایع غذایی، 40(10): 103-116.
شکری بوسجین، ز.،کدیور، م. وکرامت، ج.، 1383، بررسی رابطه ساختمان و خواص عملکردی و رئولوژیکی صمغ کتیرا و مقایسه آن با صمغ عربی و کاربرد آن در کیک. پایان نامه کارشناسی ارشد، دانشگاه صنعتی اصفهان، دانشکده کشاورزی، 106 .
صارم نژاد، س.، عزیزی، م. ح.، برزگر، م. و عباسی، س.، 1388، بررسی اثرpH و غلظت پلاستی سایزر روی ویژگی های فیلم تهیه شده از ایزوله پروتیین باقلا. فصلنامه علوم و صنایع غذایی، 2(6): 93-103.
عبدالهی، م.، رضایی، م. و فرزی، غ.،1390، تهیه و ارزیابی خصوصیات نانوکامپوزیت زیست تخریب پذیر کیتوزان/ نانورس جهت کاربرد در بسته بندی مواد غذایی. نشریه پژوهش های علوم و صنایع غذایی، 7(1): 71-79.
فاضل، م.، عزیزی، م.ح.، عباسی، س. و برزگر، م.،1391، بررسی تاثیر کتیرا، گلیسرول و روغن روی خصوصیات فیلم خوراکی بر پایه نشاسته سیب زمینی. فصلنامه علوم و صنایع غذایی، 34(9):97-106.
قنبرزاده، ب.، و الماسی، ه.،1388، بررسی ویژگی های فیزیکی فیلم های مرکب زیست تخریب پذیر خوراکی کربوکسی متیل سلولز – اسید اولئیک. فصلنامه علوم و صنایع غذایی، 2(6): 35-42.
قنبر زاده، ب.، الماسی، ه. و زاهدی، ی.، 1388، بیوپلیمرهای زیست تخریب پذیر و خوراکی در بسته بندی موادغذایی ودارویی. تهران : انتشارات دانشگاه صنعتی امیر کبیر (پلی تکنیک تهران).
مویدی، س.، صادقی ماهونک، ع.، عزیزی، م.ح. و.مقصودلو، ی.، 1392، بررسی اثر صمغ کتیرا بر ویژگی های کیفی نان حجیم. فصلنامه علوم و صنایع غذایی، 38(10):104.
Ahmadi, R., Kalbasi-Ashtari, A., Oromiehie, A., Yarmand, M. S.& Jahandideh, F., 2012, Development and characterization of a novel biodegradable edible film obtained from psyllium seed (Plantago ovata Forsk). Journal of Food Engineering,109(4): 745-751.
Albert, Y., Leung, A. & Steven, F., 1996, Encyclopedia of Common Natural Ingridients Used in Food Drugs and Cosmetic. Food Chemistry,59(2): 321.
Albert, S. & Gauri, M., 2002, Comparative evaluation of edible coatings to reduce fat uptake in a deep-fried cereal product. Food Research International, 35: 445-458.
ASTM, 1995, Standard test methods for water vapor transmission of material, E 96-95. Annual book of ASTM, American Society for Testing and Material.
ASTM., 2010, Standard Test Methods for Tensile Properties of Thin Plastic Sheeting, D882-10. Annual book of ASTM, American National Standards Instiute (ANSI).
Bertuzzi, M.A., Vidaurre, E.F.C., Armada, M. & Gottifredi, J.C., 2007,Water vapor permeability of edible starch based films. Journal of Food Engineering, 80:972-978.
Cao N., Fu, Y. & He, J., 2007, Preparation and physical properties of soy protein isolate and gelatin composite films. Food Hydrocolloids, 21:1153-1162.
Chen, C. H. & Lai, L. S, 2008, Mechanical and water vapor barrier properties of tapioca starch/decolorized hsian-tsao leaf gum films in the presence of plasticizer. Food Hydrocolloids,22: 1584-1595.
Cho, Y. S. & Rhee, C., 2002, Sorption characteristics of soy protein films and their relation to mechanical properties. LWT- Food Science and Trchnology, 35:151-157.
Cho, Y. S., Park, J. W., Batt, H. T. & Thomas, R. L., 2007, Edible films made from processed soy protein concentrates. LWT- Food Science and Technology, 40: 418-423.
Fishman, M. L., 1997, Edible and biodegradable polymer films: challenges and opportunities. Food Technology, 51: 60-74.
Gontard, N., Duchez, C., Cuq, B. & Guilbert, S., 1994, Edible composite films of wheat gluten and lipids: water vapour permeability and other physical properties. Food Science and Technology, 29:39-50.
Kim, K. M., Hwang, K. T., Weller, C. L. & Hanna, M. A., 2002, Preparation and Characterization of Soy Protein Isolate Films Modified with Sorghum Wax. J10122 in JAOCS,79: 615-619.
Lapasin, R. & Pricl, S., 1995, Rheology of industrial polysaccharides: theory and applications. Blackie Academic & Professional, London.
Londhe, S. V., Joshi, M. S., Bhosale, A. A. & Kale, S. B., 2011, Isolation of quality soy protein from soya flakes. International Journal of Research in Pharmaceutical and Biomedical Sciences, 2: 1175- 1177.
Morton, J. F.,1977, Major Medicinal Plants. ILLINOIS: Springfield,: Charles C. Thomas, 356-375.
Rhim, J. W., Wu, Y., Weller, C. L. & Schnepf, M., 1999, Physical Characteristics of a Composite Film of Soy Potein Isolate and Propyleneglycol Alginate. Food Science & Technology, 64:149-152.
Rhim, J.W., 2007, Natural Biopolymer- Based Nanocomposite Films for Packaging Applications. Critical Reviews in Food Science and Nutrition, 47:411-433.
Russo, M.A.L., Sullivan, C., Rounsefell, B., Halley, P. J., Truss, R. & Clarke, W.P., 2009, The anaerobic degradability of thermoplastic starch:Polyvinyl alcohol blends: Potential biodegradable food packaging materials. Bioresource Technology,100:1705-1710.
Salmoral E.M., Gonzalez, M. E., Mariscal, M. P. & Medina, L. F., 2000, Comparison of chickpea and soy protein isolate and whole flour as biodegradable plastics. Industrial Crops and Products, 11:227-236.
Shahabi-Ghahafarrokhi, I., Khodaiyan, F., Mousavi, S. M. & Yousefi, H., 2015, Effect of γ-irradiation on the physical and mechanical properties of kefiran biopolymer film. International Journal of Biological Macromolecules, 74: 343–350.
Siracusa, V., Rocculi, P., RomanI, S. & Dalla Rosa, M., 2008, Biodegradable polymers for food packaging: a review. Trends in Food Science & Technology,19:634-643.
Tharanthan, R.N., 2003, Biodegradable films and composite coatings:past ، present and future. Food Science & Technology, 14:71-78.
Tian, H., Xu, G., Yang, B. & Guo, G., 2011, Microstructure and mechanical properties of soy protein/agar blend films: Effect of composition and processing methods .Journal of Food Engineering,107: 21-26
CAPTCHA Image