نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه تبریز

2 َََدانشگاه تبریز

3 مرکز تحقیقات کشاورزی و منابع طبیعی خراسان رضوی

4 دانشگاه صنعتی سهند

چکیده

در این پژوهش، فیلم های زیست نانو کامپوزیت نشاسته‌ی نرم شده (PS) حاوی نانولایه های دو بعدی سدیم مونت موریلونیت (MMT) و نانوذرات سه بُعدی دی اکسید تیتانیم (TiO2) به روش قالب ریزی تهیه شدند. توپوگرافی سطح و ساختار شیمیایی فیلم ها توسط میکروسکوپ نیروی اتمی (AFM) و طیف سنجی فروسرخ (FT-IR) مطالعه گردید. در آمیزه‌ی دوجزئی PS-MMT، لایه های ورقه ای شده‌ی نانورس، به طور یکنواخت در ماتریس پلیمری پخش شده اند. تصاویر سه بعدی میکروسکوپ نیروی اتمی (AFM) توزیع یکنواخت تر نانورس و TiO2، زبری کمتر و سطح صاف تر ماتریس PS-3% MMT-TiO2 نسبت به فیلم های دوجزئی PS-3%MM را نشان داد. وجود پیوندهای هیدروژنی و برهمکنش های الکترواستاتیک بین نانورس و TiO2 با یکدیگر و با زنجیرهای نشاسته توسط پیک های مربوط به پیوند C-O-H در 1- cm1142 و1-cm 990 و افزایش پهنای باند و شدت جذب در ناحیۀ 1-cm800-500 در طیف سنجی فروسرخ (FT-IR) تأیید گردید. نتایج آزمون گرماسنج پویشی تفاضلی (DSC) نشان داد، افزایش غلظت TiO2 فیلم های PS-3%MMT باعث افزایش دمای ذوب و دمای انتقال شیشه ای (Tg) به ترتیب از 1/295 تا 3/306 درجه سانتی‌گراد و از 1/199 تا 6/207 درجه سانتی‌گراد گردیده است. افزایش غلظت نانورس تأثیر معنی داری بر پارامترهای رنگی فیلم نداشت، اما با افزایش 1% محتوی TiO2 در فیلم حاوی 3% نانورس، اختلاف رنگ کلی (ΔE) و اندیس سفیدی (WI) فیلم ها به ترتیب %6/86 و 76% افزایش یافته و از میزان سرخی وزردی آنها کاسته شد. به منظور بررسی کدورت و رفتار جذب پرتوهای نوری از اسپکتروفتومتری UV-Vis در دامنه طول موج nm 200-800 استفاده شد. نتایج نشان داد که می توان فیلم نانوکامپوزیتی حاصل را به عنوان ماده بسته بندی جهت حفاظت از محتویات در برابر پرتوهای نور UV و مرئی بکار برد.

کلیدواژه‌ها

Almasi, H., Ghanbarzadeh, B. and Entezami, A.A. 2010. Physicochemical properties of starch–CMC–nanoclay biodegradable films. International Journal of Biological Macromolecules, 46, 1, 1-5.
Al-Sagheer, F.A. and Merchant, S. 2011. Visco-elastic properties of chitosan–titania nano-composites. Carbohydrate Polymer, 85, 356-362.
Bin Ahmad, M., Shameli, K., Darroudi, M., Yunus W.M.Z.W. and Ibrahim, N.A. 2009. Synthesis and Characterization of Silver/Clay/Chitosan Bionanocomposites by UV-Irradiation Method. American Journal of Applied Sciences, 6, 12, 2030-2035.
Bruna, J.E., Penaloza, A., Guarda, A., Rodriguez, F. and Galotto, M.J. 2012. Development of MtCu2+/LDPE nanocomposites with antimicrobial activity for potential use in food packaging. Applied Clay Science, 58, 79-87.
Buzarovska, A. and Grozdanov, A. 2012. Biodegradable Poly (L-Lactic Acid)/TiO2 Nanocomposites: Thermal Properties and Degradation. Journal of Applied Polymer Science, 123, 4, 2187-2193.
Casariego, A., Souza, B.W.S., Cerqueira, M.A., Teixeira, J.A., Cruz, L., Dı´az, R. and Vicente, A.A. 2009. Chitosan/clay films’ properties as affected by biopolymer and clay micro/nanoparticles’ concentrations. Food Hydrocolloids, 23, 1895–1902.
Cerrada, M.L., Cristina Serrano, C., Chaves, M.S., Garcia, M.F., Martin, F.F., de Andres, A., Rioboo, R.J.J., Kubacka, A., Ferrer, M., and Garcia, M.F., 2008. Self-Sterilized EVOH-TiO2 Nanocomposites: Interface Effectson Biocidal Properties. Advanced Functional Materials, 18, 1949–1960.
Chung, Y. L., Ansari, S., Estevez, L., Hayrapetyan, S., Giannelis, E. P. and Lai, H. M. 2010. Preparation and properties of biodegradable starch–clay nanocomposites. Carbohydrate Polymer, 79, 391–396.
Dadashi, S., Mousavi, S.A., Emam D-Jomeh, Z. and Oromiehie, A. 2012. Films Based on Poly (lactic acid) Biopolymer: Effect of Clay and Cellulosic Nanoparticles on their Physical, Mechanical and Structural Properties. Iranian Journal of Polymer, 25, 2, 127-136.
Deka, B. K. & Maji, T.K., 2011. Effect of TiO2 and nanoclay on the properties of wood polymer nanocomposite. Composites: Part A, Applied Science and Manufacturing, 42, 12, 2117-2125.
Diaz-Visurraga, J., Mele´ndrez, M.F., Garcia, A., Paulraj, M. and Cardenas, G. 2010. Semitransparent Chitosan-TiO2 Nanotubes Composite Film for Food Package Applications. J. Applied Polymer Science, 116, 3503–3515.
Fakhri, L.A., Ghanbarzadeh, b., Dehghannia, j. and Entezami, A.A. 2012. The Effects of Montmorillonite and Cellulose Nanocrystals on Physical Properties of Carboxymethyl Cellulose/Polyvinyl Alcohol Blend Films. Iranian Journal of Polymer, 24, 6, 455-466.
Ghanbarzadeh, B., Almasi H. and Oleyaei, S. A. 2014. A Novel Modified Starch/Carboxy‌ Methyl Cellulose/Montmorillonite Bionanocomposite Film: Structural and Physical Properties, International Journal of Food Engineering, 10 (1): 121–130.
Ghanbarzadeh, B., Almasi, H and Entezami, A.A. 2010. Physical properties of edible modified starch/carboxymethyl cellulose films, Innovative Food Science and Emerging Technologies, 11, 4, 697-702.
Hernandez, O., Emaldi, U. and Tovar, J. 2008. In vitro digestibility of edible films from various starch sources. Carbohydrate Polymer, 71, 648–655.
Hoang-Minh, T., Le, T.H., Kasbohm, J. and Giere, R. 2010. UV-protection characteristics of some clays. Applied Clay Science, 48, 349–357.
Hoang-Minh, T., Le, T.H., Kasbohm, J. and Giere, R. 2011. Substituting non-natural agents in UV-protection cream by a mixture of clay with Ganoderma pfeifferi extract. Applied Clay Science, 53, 66–72.
Jimenez Rioboo, R.J., Serrano-Selva, C., Fernandez-Garcia, M., Cerradab, M.L., Kubacka, A., Fernandez-Garcia, M. and de Andres, A. 2008. Acoustic and optical phonons in EVOH–TiO2 nanocomposite films: Effect of aggregation. Journal of Luminescence, 128, 851–854.
Liao, H.T. and Wu, C.S. 2008. New Biodegradable Blends Prepared from Polylactide, Titanium Tetraisopropylate, and Starch. Journal of Applied Polymer Science, 108, 2280–2289.
Li, L. H., Deng, J. C., Deng, H. R., Liu, Z. L., and Li, X. L. 2010. Preparation, characterization and antimicrobial activities of chitosan/Ag/ZnO blend films. Chemical and Engineering Journal, 160, 378–382.
Li, R., Nie, K., Pang, W. and Zhu, Q. 2007. Morphology and properties of organic–inorganic hybrid materials involving TiO2 and poly (e-caprolactone), a biodegradable aliphatic polyester. Journal of Biomedical Materials Research part A., 114-122.
Li, Y., Jiang, Y., Liu, F., Ren, F., Zhao, G. and Leng, X. 2011. Fabrication and characterization of TiO2/whey protein isolate nanocomposite film. Food Hydrocolloids, 25, 6, 1-7.
Majdzadeh, K. and Nazari, B., 2010. Improving the mechanical properties of thermoplastic starch poly vinyl alcohol clay nanocomposites. Composte Science and Technology, 70, 1557-1563.
Mallakpour, S. and Barati, A., 2011. Efficient preparation of hybrid nanocomposite coatings based on poly (vinyl alcohol) and silane coupling agent modified TiO2 nanoparticles. Progress in Organic Coatings, 71, 2011, 391–398.
Mallakpour, S. and Madani, M. 2012. Transparent and thermally stable improved poly (vinyl alcohol)/Cloisite Na+/ZnO hybrid nanocomposite films: Fabrication, morphology and surface properties. Progress in Organic Coatings, 74, 520– 525.
Ma, X., Chang, P. R., Yang, J., and Yu, J. 2009. Preparation and properties of glycerol plasticized-peastarch/zinc oxide-starch bionanocomposites. Carbohydrate Polymer, 75, 472–478.
Nakayama, N. and Hayashi, T. 2007. Preparation and characterization of poly (L-lactic acid)/TiO2 nanoparticle nanocomposite films with high transparency and efficient photodegradability. Polymer Degradation and Stability, 92, 1255-1264.
Noushirvani, N., Ghanbarzadeh, B. and Entezami, A.A. 2012. Comparison of Tensile, Permeability and Color Properties of Starch-based Bionanocomposites Containing Two Types of Fillers: Sodium Montmorilonite and Cellulose Nanocrystal. Iranian Journal of Polymer, 24, 5, 391-402.
Park, S. K., Hettiarachy, N. S. and Were L., 2000. Degradation behavior of soy protein-wheat gluten films in simulated soil conditions. Journal of Agriculture and Food Chemistry, 48, 60-68.
Perez-Mateos, M., Montero, P. and Gomez-Guillen, M.C. 2009. Formulation and stability of biodegradable films made from cod gelatinand sunflower oil blends. Food Hydrocolloids, 23, 53–61.
Qu, L., Huang, G., Zhang, P., Nie, Y. and Weng, G. 2009. Synergistic reinforcement of nanoclay and carbon black in natural rubber. Polymer International, 59, 1397–1402.
Ray, S.S. and Bousmina, M., 2005. Biodegradable polymers and their layered silicate nanocomposites: In greening the 21st century materials world. Progress in Materials Science, 50, 962–1079.
Rhim, J.w. 2007. Potential use of biopolymer-based nanocomposite in food packaging applications. Food Science and Biotechnolgy, 16 (5), 691-709.
Rhim, J.w. 2011. Effect of clay contents on mechanical and water vapor barrier properties of agar-based nanocomposite films. Carbohydrate Polymer, 86, 691-699.
Rhim, J.W., Lee, S.B. and Hong, S.I. 2011. Preparation and Characterization of Agar/Clay Nanocomposite Films: The Effect of Clay Type. Journal of Food Science, 76, 3, 40-48.
Sothornvit, R., Rhim, J. W. and Hong, S.I. 2009. Effect of nano clay type on the physical and antimicrobial properties of whey protein isolate/clay composite films. Journal of Food Engineering.91, 468–473.
Taskaya, L., Chen, Y.C. and Jaczynski, J. 2010. Color improvement by titanium dioxide and its effect on gelation and texture of proteins recovered from whole fish using isoelectric solubilization/precipitation. LWT-Food Science and Technology, 43, 401–408.
Tunç, S. and Duman, O. 2011. Preparation of active antimicrobial methyl cellulose/carvacrol/ montmorillonite nanocomposite films and investigation of carvacrol release. LWT-Food Science and Technology, 44, 465-472.
Vartiainen, J., Tammelin, T., Pere, J., Tapper, U. and Harlin, A. 2010. Biohybrid barrier films from fluidized pectin and nanoclay. Carbohydrate Polymer, 82, 989-996.
Yin, M., Li, C., Guan, G., Yuan, X., Zhang, D. and Xiao, Y. 2009. In-Situ Synthesis of Poly (Ethylene Terephthalate)/Clay Nanocomposites Using TiO2/SiO2 Sol-Intercalated Montmorillonite as Polycondensation Catalyst. Polymer Engineering and science, 1562-1572.
Zhou, J.J., Wang, S.Y. and Gunasekaran, S. 2009. Preparation and Characterization of Whey Protein Film Incorporated with TiO2 Nanoparticles. Journal of Food Science, 74, 7, 50-56.
Zhuang, W., Liu, J., Zhang, J.H., Hu, B.X. and Shen, J. 2009. Preparation, Characterization, and Properties of TiO2/PLA Nanocomposites by In Situ Polymerization. Polymer Composites, 1074-1080.
Zhu, Y., Buonocore, G.G., Lavorgna, M. and Ambrosio, L. 2011. Poly (lactic acid)/Titanium Dioxide Nanocomposite Films: Influence of Processing Procedure on Dispersion of Titanium Dioxide and Photocatalytic Activity. Polymer Composites, 519- 528